摘要
对多体系统动力学Euler-Lagrange方程,建立了约束非线性规划模型及相应的非线性规划问题的约束变尺度法。该方法有效地克服了积分过程的违约问题,通用性强,易于程序化。算例说明了方法的有效性。
A constrained variable metric method for solving Euler-Lagrange equations in multibody system dynamics was preseod. The framework was based on the conversion of the equations into a nonlinear programming problem. The algorithm overcomes effectively the problem of violating constraints in integral procedure. It is versatile and suitable for computerization. Numerical examples show that algorithm is numerically efficient.
出处
《工程力学》
EI
CSCD
北大核心
2000年第1期20-24,共5页
Engineering Mechanics
基金
国家自然科学基金!19672015
关键词
多体系统
EULER-LAGRANGE方程
非线性规划
multibody systems
Euler-Lagrang equations, differential-algebraic equations, constrained nonlinear propramming