期刊文献+

碳纳米管Y形分子结的热导率与热整流现象 被引量:11

Thermal conductivity and thermal rectification of carbon nanotube Y junctions
原文传递
导出
摘要 基于碳纳米管Y形分子结的结构重构,通过非平衡分子动力学方法和量子修正,模拟分析了Y形分子结的热导率和热整流现象.研究表明:相对单根完整碳管,Y形分子结在不同温度下导致热导率大约12%—85%的下降;Y结主干向分支方向的导热能力强于分支向主干方向的导热能力;Y结降低热导率的作用随着温度的升高逐渐减小;Y结的热整流效果随着温度的上升先减弱后增强. The thermal conductivity of carbon nanotube (CNT) Y junctions and the thermal rectification behavior in the Y junctions have been investigated by means of classical non-equilibrium molecular dynamics simulation with quantum effects considered. The results indicate that the thermal conductivity of a CNT Y junction is about 12%–85% lower than a (10,10) pristine CNT. The thermal conductivity of the Y junction in the positive direction, when the heat flux is directed from the stem to branches, is always higher than that of the reverse direction, i.e. from branches to the stem. The decline of the thermal conductivity due to the existence of Y junctions decreases with increasing temperature. The thermal rectification coefficient of the Y junction first decreases and then increases with the increase of temperature.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2013年第7期329-334,共6页 Acta Physica Sinica
基金 国家自然科学基金(批准号:50876010 51176011) 国家重点基础研究发展计划(973计划)(批准号:2012CB720404)资助的课题~~
关键词 碳纳米管 热导率 热整流 carbon nanotube, thermal conductivity, rectification
  • 相关文献

参考文献23

  • 1Biro L P, Horvlith Z E, MArk G I, Osv:ith Z, Ko6s A A, Benito A M, Maser W, Lambin P 2004. 被引量:1
  • 2Diamond and related materials 13 2 Li J, Papadopoulos C, Xu J 1999 Nature 402 6759. 被引量:1
  • 3Satishkumar B C, Thomas P J, Govindaraj A, Rao C 2000Appl. Phys. Lett. 77 16. 被引量:1
  • 4Andriotis A N, Menon M, Srivastava D, Chernozatonskii L 2001 Phys. Rev. Lett. 87 6. 被引量:1
  • 5Andriotis A N, Menon M, Srivastava D, Chemozatonskii L 2002 Phys.Re: B 65 16. 被引量:1
  • 6Noya E G, Srivastava D, Menon M 2009 Phys. Rev. B 79 11. 被引量:1
  • 7Wang L, Li B 2007 Phys. Rev. Lett. 99 17. 被引量:1
  • 8Starr C 1936 Physics 7 1. 被引量:1
  • 9Chien S K, Yang Y T, Chen C K 2010 Phys. Lett. A 374 48. 被引量:1
  • 10VaUabhaneni A K, Hu J, Chen Y P, Ruan X 2011 Proceedings of the ASME/JSME 2011 8th Thermal Engineering Joint Conference Hawaii, USA, March 13-17, 2011. 被引量:1

同被引文献61

  • 1Steve Plimpton.Fast Parallel Algorithms for Short-Range Molecular Dynamics[J].Journal of Computational Physics.1995(1) 被引量:2
  • 2Erikson K J, Gibb A L, Sinitskii A, et al. Longitudi- nal Splitting of Boron Nitride Nanotubes for the Facile Synthesis of High Quality Boron Nitride Nanoribbons [J]. Nanoletters, 2011, 11(8): 3221- 3226. 被引量:1
  • 3ZHENG Fawei, ZHOU Gang, LIU Zhirong, et al. Predic- tion of Half Metallicity Along the Edge of Zigzag Boron Nitride Nanoribbons [J]. Physical Review B, 2008, 78: 205415-205419. 被引量:1
  • 4Sevik C, Kinaci A, Haskins J B, et al. Characterization of Thermal Transport in Boron Nitride Nanostructures [J]. Physical Review B, 2011, 84:085409. 被引量:1
  • 5Yang Kaiyang, Chen Yaunping, Xie Yue'e, et al. Effect of Triangle Vacancyle on Thermal Transport in Boron Ni- tride Nanoribbons [J]. Solid State Communications, 2011, 151:460-464. 被引量:1
  • 6Muralidharan K,Erdmann R G, Runge K, et al. Asym- metric Energy Transport in Defected Boron Nitride Nanoribbons: Implications for Thermal Rectification [J]. AIP Advances, 2011, 1:041703. 被引量:1
  • 7Starr C. Physics, 1936, 7:1. 被引量:1
  • 8Terraneo M, Peyrard M, Casati G. Controlling the En- ergy Flow in Nonlinear Lattices: a Model for a Thermal Rectifier [J]. Physical Review Letters, 2002, 88:094302. 被引量:1
  • 9HU Jiuning, RUAN Xiulin, CHEN Yong P. Thermal Con- ductivity and Thermal Rectification in Graphene Nanorib- bons: a Molecular Dynamics Study [J]. Nano Letters, 2009, 9:2730-2735. 被引量:1
  • 10YANG Ping, LI Xialong, ZHAO Yanfan, et al. Effect of Triangular Vacancy Defect on Thermal Conductivity and Thermal Rectification in Graphene Nanoribbons [J]. Physics Letters A, 2013, 377(34-36): 2141 -2146. 被引量:1

引证文献11

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部