期刊文献+

Burgers方程的精确解 被引量:3

Exact solutions of Burgers equations
下载PDF
导出
摘要 借助于Cole-Hope变换,积分变换法和拟解的方法,获得Burgers方程,(2+1)维Burgers方程,(2+1)维高阶Burgers方程的新的精确解.这种方法可以解决一系列的偏微分方程. With the help of cole - Hope transform, integral method and quasi solution method, some new exact solutions of Burgers equation, (2 + 1 ) dimensional Burger equation and ( 2 + 1 ) dimensional higher - order Burgers equation were presented. This method could solve a series of partial differential equations.
作者 李伟
出处 《渤海大学学报(自然科学版)》 CAS 2013年第1期22-24,共3页 Journal of Bohai University:Natural Science Edition
关键词 Cole—Hope变换 BURGERS方程 精确解 Cole -hope transform Burger equation exact solutions
  • 相关文献

参考文献8

二级参考文献12

  • 1[1]Ablowitz M J,Clarkson PA.Solitons,nonlinear evolution equations and inverse scattering[M].New York:Cambridge University Press,1991. 被引量:1
  • 2[2]Wang ML.Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics[J].Phys.Lett.A,1996(216):67-75. 被引量:1
  • 3[3]Lou SY.On the coherent structures of the Nizhnik-Novikov-Veselov equation[J].Phys.Lett.A,2000 (277):94-100. 被引量:1
  • 4[4]Xia TC,Yu FJ,Chen DY.The multi-component classical-Boussinesq hierarchy of soliton equations and its multi-component integrable coupling system[J].Chaos,Solitons and Fractals,2005 (23):1163-1167. 被引量:1
  • 5[5]Wang Q,Chen Y,Zhang HQ.A new Riccati equation rational expansion method and its application to (2 + 1)-dimensional Burgers equation[J].Chaos,Solitons and Fractals,2005(25):1019-1028. 被引量:1
  • 6[6]Parkes EJ,Duffy BR.Travelling solitary wave solitions to a compound KdV-Burgers equation[J].Phys.Lett.A,1997(229):217-220. 被引量:1
  • 7[7]Fan EG.Extended tanh-function method and its applications to nonlinear equations[J].Phys.Lett.A,2000(277):212-218. 被引量:1
  • 8范恩贵,张鸿庆.非线性孤子方程的齐次平衡法[J].物理学报,1998,47(3):353-362. 被引量:266
  • 9陈黎丽.形式变量分离法及一般HirotaSatsuma方程新的精确解[J].物理学报,1999,48(12):2149-2153. 被引量:8
  • 10李志斌,姚若侠,等.非线性耦合微分方程组的精确解析解[J].物理学报,2001,50(11):2062-2067. 被引量:21

共引文献21

同被引文献74

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部