期刊文献+

G-度量空间两对非相容映象的几个新的公共不动点定理 被引量:1

Some new common fixed point theorem for two pairs of noncompatible mappings in G-metric spaces
下载PDF
导出
摘要 在G-度量空间中,利用自映象对的非相容性和(Ag)型R-弱交换性条件,在既不要求空间的完备性,也不要求映象连续的条件下,建立了一类立方型Φ-压缩映象条件下4个映象的公共不动点定理,其结果改进和发展了已有文献的相关结果. By using the noncompatible and (Ag) type R -weak commutativity conditions of self-mapping pairs, established some new common fixed point theorem for four self-mappings with ~ -contractive condition of cubic type in the framework of G -metric spaces. The results don't demand for completeness of spaces and continuity of mappings. The results obtained improves and extends some relative results.
出处 《高师理科学刊》 2013年第2期25-29,共5页 Journal of Science of Teachers'College and University
基金 韩山师范学院大学生创新性实验(实践)项目(No.2012-71) 韩山师范学院理科团队项目(LT201202)
关键词 G-度量空间 立方型Φ-压缩映象 非相容映象对 (Ag)型R-弱交换 公共不动点 G -metric space cubic type φ -contractive condition noncompatible mapping pairs (Ag) typeR -weak commutativity mapping common fiexd point
  • 相关文献

参考文献6

二级参考文献12

共引文献13

同被引文献6

  • 1Geraghty M A. On contractive mappings [ J ]. Proceedings of the American Mathematical Society, 1973,40 (2) :604 -608. 被引量:1
  • 2La Rosa V, Vetro P. Fixed points for Geraghty-contractions in partial metric spaces [ J ]. Journal of nonlinear sciences and applications ,2014,7 ( 1 ) :1 - 10. 被引量:1
  • 3D uki6 D, Kadelburg Z, Radenovic" S. Fixed points of Geraghty-type mappings in various generalized metric spaces[ C ]. Abstract and Applied Analysis, Hindawi Publishing Corporation ,2011. 被引量:1
  • 4Mustafa Z, Sims B. A new approach to generalized metric spaces [ J ]. J Nonlinear Convex Anal ,2006,7 (2) : 289 - 297. 被引量:1
  • 5Oltra S, Valero O. Banach' s fixed point theorem for partial metric spaces [ J ]. Rendiconti dell' Istitutodi Matematica dell' Universit'a di Trieste,2004,36 : 17 - 26. 被引量:1
  • 6Altun I, Sola F, Simsek H. Generalized contractions on partial metric spaces [ J ]. Topoi App1,2010,157:2778 - 2785. 被引量:1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部