期刊文献+

Rings with Maximal Finite Subrings

Rings with Maximal Finite Subrings
下载PDF
导出
摘要 Let R be an infinite ring with a maximal finite subring. We prove that R has a largest finite ideal and a largest finite nilpotent ideal N By a B ring, we mean an infinite ring with 1 containing a maximal finite subring which is a subfield containing 1. It is shown that R/NUVW, where U is a finite ring, V is a finite direct sum of matrix rings over B rings, and W is a ring containing no nonzero finite subrings. Let R be an infinite ring with a maximal finite subring. We prove that R has a largest finite ideal and a largest finite nilpotent ideal N By a B ring, we mean an infinite ring with 1 containing a maximal finite subring which is a subfield containing 1. It is shown that R/NUVW, where U is a finite ring, V is a finite direct sum of matrix rings over B rings, and W is a ring containing no nonzero finite subrings.
作者 杜现昆 齐毅
出处 《Northeastern Mathematical Journal》 CSCD 2000年第1期61-66,共6页 东北数学(英文版)
基金 The NSF!( 1 9670 1 0 3 5) of China
关键词 finite subring direct sum matrix ring finite subring direct sum matrix ring
  • 相关文献

参考文献8

  • 1[1]Laffey, T.J., A finiteness theorem for rings, Proc. Roy. Irish Acad., 92A(1992), 285-288. 被引量:1
  • 2[2]Klein, A.A., The finiteness of a ring with a finite maximal subring, Comm. Algebra, 21(1993), 1389-1392. 被引量:1
  • 3[3]Bell, H. E. And Guerriero, F., Some conditions for finiteness and commutativity of rings, Internat. J. Math. Math. Sci., 13(1990), 535-544. 被引量:1
  • 4[4]Bell, H.E. And Klein, A. A., On finiteness of rings with finite maximal subrings, lnternat. J. Math. Math. Sci., 16(1993), 351-354. 被引量:1
  • 5[5]Lanski, C., Rings with finite maximal invariant subrings, Canad. J. Math., 48(1996), 596-606. 被引量:1
  • 6[6]Szász, F. A., Radical of Rings, John Wiley & Sons, Chichester-New York-Brisbane-Toronto, 1981. 被引量:1
  • 7[7]Jacobson, N., Structure of Rings, Amer. Math. Soc. Colloq. Publ., Vol. 37, Providence, RI, 1956. 被引量:1
  • 8[8]Lanski, C., On the cardinality of rings with special subsets which are finite, Houston J. Math., 19(1993), 357-373. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部