摘要
本文给出了m为素数且a为模m的一个原根的充要条件,证明了Lucas定理中用于构造素数的a就是模m的原根,推出了奇素数模m的原根为平方非剩余等结论,为选择a和m-1的素因数使在指定范围内产生较多素数提供了依据.文中还给出了m为奇素数时,a为模m的一个平方非剩余而非原根的充要条件,得出了求模为奇素数的全部原根的一种简便方法.
In this paper,we give the sufficient and necessary condition of that m is prime number and a is a primitive root,and proved the following results:if m is an odd prime number and q(q>1) is an odd divisor of m-1 then the sufficient and necessary condition of that a is a non-square residue and non-primitive root is-1 (modm). Finally,we give a brief method of obtaining all primitive roots of a prime number.
出处
《数学理论与应用》
2000年第1期66-68,共3页
Mathematical Theory and Applications