摘要
本文给出了以雅可比多项式的零点作为插值节点的一类插值多项式 Bn( f ;x)的导数逼近具有一阶连续导数的函数的收敛阶 .并且指出 limn→∞ Bn′( f;-1 )≠f′( -1 ) .
In this paper, the convergence order of the C 1 function approximation by a kind of interpolation polynomials B n(f;x) , which uses zeros of Jacobi polynomial as the interpolation node is worked out. limn→∞ B 1 n(f;-1)≠f 1(-1) is pointed out.
出处
《工科数学》
2000年第3期1-4,共4页
Journal of Mathematics For Technology
关键词
插值多项式
导数逼近
收敛阶
雅可比多项式
derivative approximation
convergence order
interpolation polynomial