摘要
利用有限域F2n到F2m上的迹函数trm n()及其性质,研究二元No序列的多项相关性,分析结果表明,周期为P=2n–1的二元No序列多项相关函数(k1,k2,…,ks-1)的表达式为P–1(2mt–T),值域为{P–1(2mt–T)︱t=0,1,…,(T–1)r(2m–1)}∪{1},据此得出二元No序列的非平凡多项相关函数的值域都是多值的,且大于3,因此二元No序列的多址干扰强度大于Kasami序列。
This paper investigates the multinomial relativity of binary No sequences by using the conception and properties of trace functions from the field F2n to the subfield F2m. The multinomial relativity function of No sequences of period 2n–1 is P–1(2mt–T) , and its value field is {P–1(2mt–T)︱t = 0,1,…,(T–1)r∕(2m–1)}∪{1}. In this correspondence, it shows that the multinomial relativity function of No sequences has more than three values, so the multiple access interference of No sequences is more intensive than Kasami sequences.
出处
《计算机工程》
CAS
CSCD
2013年第4期137-139,共3页
Computer Engineering
基金
安徽省自然科学基金资助项目(1208085QF119)
安徽省高校省级自然科学研究基金资助项目(KJ2013Z286)
安徽省淮北师范大学青年科研基金资助项目(2012xq45)
关键词
有限域
迹函数
No序列
自相关函数
多项相关性
移加特性
finite field
trace function
No sequences
auto-correlation function
multinomial relativity
shift additive property