期刊文献+

SPR传感器阵列中微流通池的流场仿真

Simulation of flow field in micro flow pool in SPR sensor array
下载PDF
导出
摘要 在自制表面等离子体激元共振(SPR)传感器阵列检测装置的微流通池的研制中,为了获得更好的检测精度和重复性,需要流经各检测点的流量尽可能一致。设计了几种不同的微流通池结构,并利用Comsol Multiphysics软件对其内部的流场进行仿真分析。首先,分析了常用梭状流通池的内部流场分布,并研究了不同长度过渡段对流场分布的影响。在此基础上,讨论了不同流通池形状,特别是流通池外形轮廓,如椭圆状流通池和边界流线型更好的流通池对流场分布的影响。此后,还研究了过渡区中微结构阵列设计对检测区流场分布的影响。仿真研究结果表明:适当延长过渡段长度,有利于改善流体流动的稳定性和均匀性,但这种改善将随长度的进一步增加逐渐减弱。而不同的边界外形轮廓对检测区域流场的影响不大;当采用一定的微结构阵列扰流设计后,流场均匀性一定程度上得到改善。 In research and fabrication of micro flow pool for a self-made SPR sensor array device,in order to achieve high precision and repeatability,flow through each detecting point is required as coincident as possible.Several different flow pool structures are designed and simulated by using Comsol Multiphysics software.At first,inner flow field distribution of common shuttle-shape flow pool is analyzed,and impact of different transition section is analyzed.Based on this simulation,impact of different shapes of flow pools,especially their outlines,on the flow field distribution are also discussed.And then,effect of some microstructures array design on flow field distribution of detecting area.Simulation results show that appropriately extending the length of the transition section will help to improve the stability and uniformity of the flow of fluid.However,the improvement become smaller when the length exceeded a certain value.While effect of different shapes,on flow field of detecting area is not obvious.Microstructure array design can bring some improvement on the homogeneity of the flow field.
出处 《传感器与微系统》 CSCD 北大核心 2013年第4期83-87,共5页 Transducer and Microsystem Technologies
基金 国家自然科学基金资助项目(81071278 31070882 81101168) 教育部"新世纪优秀人才支持计划"资助项目(NCET-09-0842) 重庆大学研究生创新团队建设项目(200909A1002)
关键词 流通池 仿真 表面等离子体激元共振 流场 flow pool simulation surface plasmon resonance(SPR) flow field
  • 相关文献

参考文献10

  • 1Shagufta H K, Kriszta F, Raj K, et al. A versatile method to mea- sure the binding to basic proteins by surface plasmon resonan- ce [ J ]. Analytical Biochemistry ,2012,421 (2) :385 -390. 被引量:1
  • 2Li Y, Liu X, Lin Z. Rencent developments and applications of sur- face plasmon resonance biosensors for the detection of mycotoxins in foodstuffs [ J ]. Food Chemistry ,2012,132 (3) : 1549 -1554. 被引量:1
  • 3Ou H C, Luo Z F, Jiang H, et al. Indirect inhibitive immunoassay for estradiol using surface plasmon resonance coupled to online in- tube SPME [ J]. Analytical Letters ,2009,42 ( 17 ) :2758 -2773. 被引量:1
  • 4杨军,黄小玲,张丽果,曹毅,杨静.一种小型高通量SPR生物传感检测装置的研制[J].仪器仪表学报,2011,32(7):1578-1584. 被引量:5
  • 5Gaspar A, Gomez F A. Development of an ultra-low volume flow cell for surface plasmon resonance detection in a miniaturized ca- pillary electrophorcsis system [ J ]. Electrophoresis, 2012,33 ( 12 ) : 1723 -1728. 被引量:1
  • 6Sheppard G, Oseki T, Baba A, et al. Thiolene-based mierofluidic flow cells for surface plasmon resonance imaging [ J ]. Biomicro- fluidics ,2011,5 (2) :026501. 被引量:1
  • 7Hirono T, Arimoto H, Okawa S. Microfluidic image cytometry for measuring number and sizes of biological cells flowing through a microchannel using the micro-PIV technique [ J ]. Measurement Science & Technology,2008,19 (2) :025401. 被引量:1
  • 8Glatzel T, Litterst C, Cupelli C. Computational fluid dynamic- s(CFD) software tools for microfluidic applications-A case stu- dy[ J]. Computers & Fluids,2008,37(3 ) :218 -235. 被引量:1
  • 9Yang J, Li C W, Yang M S. Hydrodynamic simulation of cell doc- king in microfluidic channels with different dam structures [ J ]. Lab Chip ,2004,4( 1 ) :53 -59. 被引量:1
  • 10Yang M S, Yang J, Li C W, et al. Generation of concentration gra- dient by controlled flow distribution and diffusive mixing in a mi- crofluidie chip[ J]. Lab Chip ,2002,2 (3) : 158 -163. 被引量:1

二级参考文献17

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部