期刊文献+

医学图像检索中基于加权马氏距离的相关反馈方法 被引量:2

Medical Image Retrieval Relevance Feedback Method Based on Weighted Mahalanobis Distance
下载PDF
导出
摘要 针对医学数字图像,提出了一种将动态权重调整与加权马氏距离相结合的相关反馈方法.修改了检索策略,提高检索的查全率和查准率.克服了欧氏距离在计算相似度时特征向量间属性相关的问题,减少冗余,提高了检索精度.实验结果表明,该方法能有效利用用户反馈信息,改善检索性能. In order to solve the " semantic gap" between the underlying physical characteristics and high--level semantic image retrieval for medical digital image, a method of combining a dynamic weight adjustment and the weighted Mahalanobis distance was proposed to feedback. The search strategy was modified to improve the retrieval recall ratio and precision ratio. The method overcame the problems of the Euclidean distance in the calculation of the similarity of feature vectors between the property--related issues, reduced redundancy and improved the retrieval accuracy. The experimental results showed that this method could effectively use user's feedback to improve retrieval performance.
出处 《微电子学与计算机》 CSCD 北大核心 2013年第4期37-40,共4页 Microelectronics & Computer
基金 国家自然科学基金项目(61179019) 内蒙古自然基金重点项目(2010Zd26) 内蒙古科技大学创新基金(2010NC038 2011NCL057)
关键词 相关反馈 基于内容的医学图像检索 加权马氏距离 自适应 feedback content--based medical image retrieval weighted Mahalanobis distance adaptive
  • 相关文献

参考文献8

  • 1Muller H, Michoux N, Bandon D, et al. A review of content-based image retrieval systems in medical applications clinical benefits and future directions [J]. Medical Informatics, 2004, 73(1)I 1-23. 被引量:1
  • 2谢天文,汤伟军,赵家骜.医学CBIR系统与PACS的集成平台研究[J].北京生物医学工程,2009,28(1):89-92. 被引量:2
  • 3Rahman M, Bhattacharya P, Desai B C. A framework for medical image retrieval using machine learning and statistical similarity matching techniques with relevance feedback [J]. IEEE Transactions on Information Technology in Biomedicine, 2007, 11(1): 58-69. 被引量:1
  • 4Zhou X S, Huang T S. Relevance feedback in image retrieval: a comprehensive review [J]. Multimedia Systems, 2003, 8(6): 536-544. 被引量:1
  • 5Sahbi H, Audi Bert JY, Keriven R. Graph cut transducers for relevance feedback in content based image retrieval[R]. Certis Research Report,N07-30, Ecole Rationale des Ponts et Chaussees,2007. 被引量:1
  • 6Kagan A, Li Bing. An identity for the Fisher informa tion and Ma-halanobis distance [J]. Journal of Statist Plann Inference,2008(138):3950-3959. 被引量:1
  • 7姚宏宇,李弼程.基于广义图像灰度共生矩阵的图像检索方法[J].计算机工程与应用,2004,40(34):98-100. 被引量:19
  • 8Tamura H, Mori S, Yamawaki T. Texture features corresponding to visual perception[J]. IEEE Trans On Systems, Man and Cybernetics, 1978, Smc- 8 (6) : 460 -473. 被引量:1

二级参考文献15

  • 1Nagy PG . The future of PACS. Med Phys, 2007, 34(7) :2676 -2682. 被引量:1
  • 2Malone DE. Evidence-based practice in radiology: what color is your parachute? Abdominal Imaging, 2008, 33:3 -5. 被引量:1
  • 3Guld MO,Kohnen M, Keysers D, et al. Quality of dicom header information for image categorization. San Diego, CA: Proc Int Symp Med Imaging, 2002, 4685:280- 287. 被引量:1
  • 4Muller H,Michoux H, Bandon D, et al. A review of contentbased image retrieval systems in medical applications: Clinical benefits and future directions. International Journal of Medical Informatics, 2004, 73 ( 1 ) : 1 - 23. 被引量:1
  • 5Muller H,Rosset A,Vallee JP, et al. Comparing feature sets for content-based medical information retrieval. San Diego,CA:Proc SPIE Med Imaging,2004,5351 : 99 - 109. 被引量:1
  • 6EI-Kwae EA, Xu H, Kabuka MR. Content-based retrieval in picture archiving and communication systems. Digital Imaging, 2000, 13(2) :70 -81. 被引量:1
  • 7Lehmann T, Wein B, Dahmen J, et al. Content-based image retrieval in medical applications: A novel multi-step approach. Proc SPIE, 2000, 3972:312- 320. 被引量:1
  • 8Caroline Lacoste, Joo-Hwee Lira, Jean-Pierre Chevallet, et al. Medical-image retrieval based on knowledge-assisted text and image indexing. IEEE transactions on circuits and systems for video technology ,2007,17 ( 7 ) :889 - 900. 被引量:1
  • 9Zompatori M. Diagnostic imaging of diffuse infiltrative disease of the lung, 2004, 71 : 4 - 19. 被引量:1
  • 10ImageCLEF resources, http ://ir. shef. ac. uk/imageclef/ 被引量:1

共引文献19

同被引文献12

  • 1R M Haralick, K Shanmugam, I Dinslein. Textural features for Image Classification [J].IEEE Transactions on Systems, Man and Cybemelics, 1973,3(6):610-621. 被引量:1
  • 2Ulaby FT, Kouyate F, Brisco B, et al. Textural information in SAR Images [J]. IEEE Transactions on Geoscience and Remote Sensing, 1986,24(2):235-245. 被引量:1
  • 3Weihua Song, ling Han,Tingting Hua.A Method for Medical Image Retrieval Using Multi-Level Feature Fusion [J]. Journal )f Information &Computational Science,2009,6(2):967-974. 被引量:1
  • 4Timothy N. Rubin, America Chambers, Padhraic Smyth,et al. Statistical topic models for multi -label document classification[J].Machine Learning,2012,88(1-2): 157-208. 被引量:1
  • 5Pan Zhongling, Chen Ling. Image Retrieval Method based on cultural evolutionary algorithms [ J ]. Journal of Infor- mation,2009,6(2) :951-958. 被引量:1
  • 6Song Weihua, Han Jing, Hua Tingting. A method for medical image retrieval using multi-level feature fusion [ J]. Journal of Information ,2009,6(2) :967-974. 被引量:1
  • 7Wang Jing, Liu Zhijing. An improved clustering algorithm for web document [ J 1. Journal of Information, 2009,6 (2) :959-966. 被引量:1
  • 8Shehata S, Karray F, Kamel M S. An efficient concept- based mining model for enhancing text clustering [ J ]. IEEE Transactions on Knowledge and Data Engineer- ing,2010,22(10) : 1360-1371. 被引量:1
  • 9Rubin T N, America Chambers, Smyth P, et al. Statisti- cal topic models for multi-label document classification [ J ]. Machine Learning, 2012,88 ( 1/2 ) : 157-208. 被引量:1
  • 10高程程,惠晓威.基于灰度共生矩阵的纹理特征提取[J].计算机系统应用,2010,19(6):195-198. 被引量:175

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部