期刊文献+

基于多维形态特征表示的时间序列相似性度量 被引量:15

Similarity measure based on multidimensional shape feature representation for time series
原文传递
导出
摘要 特征表示和相似性度量是时间序列数据挖掘的基础工作,其质量好坏直接影响后期的挖掘结果.利用正交多项式回归模型对时间序列进行多维形态特征表示,分析特征维数对时间序列拟合效果的影响,选取部分特征来描述序列的主要形态趋势,提出了一种鲁棒性较强的形态特征相似性度量方法来近似度量时间序列,且具有较高的相似性度量质量.实验结果表明,基于多维形态特征表示的时间序列相似性度量方法不仅满足下界要求,具有较好的下界紧凑性和数据剪枝能力,而且在时间序列聚类和分类等数据挖掘任务中取得了良好的效果. Features representation and similarity measure are tile basic work of time series data mining. Its quality directly influences the results of time series data mining. The orthogonal polynomial regression model is used to represent the multidimensional shape features of time series and the fitting effects of time series are analyzed according to the dimensions of shape features. Part of the features are chosen to describe main shapes and trends of time series. Furthermore, a robustness method with a higher measurement quality based on shape features is proposed to approximately calculate the similarity of time series. The experimental results demonstrate that the similarity measure not only satisfies lower bound and has better tightness and pruning power for time series but also obtains good results of time series data mining such as clustering and classification.
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2013年第4期1024-1034,共11页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(70871015 71031002) 中央高校基本科研业务费(DUT11SX04 12SKGC-QG03)
关键词 时间序列 相似性度量 形态特征 正交多项式 time series similarity measure shape feature orthogonal polynomials
  • 相关文献

参考文献21

  • 1Han J W, Kamber M. Data mining: Concepts and techniques[M]. 2nd ed. Morgan Kaufmann Publishers, 2006. 被引量:1
  • 2Yang Q, Wu X D. 10 challenging problems in data mining research[J]. International Journal of Information Technology &: Decision Making, 2006, 5(4): 597 604. 被引量:1
  • 3Keogh E, Chu S, Hart D, et al. An online algorithm for segmenting time series[C]// Proceedings of the 2001 IEEE International Conference on Data Mining, Washington: IEEE, 2001:289 296. 被引量:1
  • 4詹艳艳,徐荣聪,陈晓云.基于斜率提取边缘点的时间序列分段线性表示方法[J].计算机科学,2006,33(11):139-142. 被引量:46
  • 5Keogh E, Chakrabarti K, Pazzani M, et al. Dimensionality reduction for fast similarity search in large time series databases[J]. Knowledge and Information Systems, 2001, 3(3): 263 286. 被引量:1
  • 6Hung N Q V, Anh D T. An improvement of PAA for dimensionality reduction in large time series databases[C]// Proceedings of the 2008 Pacific Rim International Conferences on Artificial Intelligence, New York: ACM, 2008: 698-707. 被引量:1
  • 7Lin J, Keogh E, Lonardi S, et al. A symbolic representation of time series, with implications for streaming algorithms[C]// Proceedings of the 2003 ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, New York: ACM, 2003:2 11. 被引量:1
  • 8Lin J, Keogh E, Wei L, et al. Experiencing SAX: A novel symbolic representation of time series[J]. Data Mining and Knowledge Discovery, 2007, 15(2): 10-144. 被引量:1
  • 9钟清流,蔡自兴.基于统计特征的时序数据符号化算法[J].计算机学报,2008,31(10):1857-1864. 被引量:30
  • 10Chan K P, Fu A W C. Efficient time series matching by wavelets[C]//Proceedings of the 1999 IEEE International Conference on Data Engineering, Washington: IEEE, 1999: 126-133. 被引量:1

二级参考文献76

  • 1陈玉山,席斌.独立成份分析方法在股票分析中的应用[J].计算机工程与设计,2007,28(6):1473-1476. 被引量:5
  • 2Yang J T,Zhou J.Multivariable trend analysis using grey model for machinery condition monitoring[J].Eleventh World Congress in Mechanism and Machine Science,2004:2188-2191. 被引量:1
  • 3Wang M H.Grey-extension method for incipient fault forecasting of oil-immersed power transformer[J].Electric Power Components and Systems,2004,32(10):959-975. 被引量:1
  • 4Deng J L.Grey Forecasting and Decision[M].Wuhan:Huazhong University of Science and Technology Press Co.,Ltd,1987. 被引量:1
  • 5Zhang B l,Coggins R.Multiresolution forecasting for future trading using wavelet decomposition[J].Neural Networks,2001,12(4):765-775. 被引量:1
  • 6李攀峰.灰色模型及其组合模型在证券分析的应用[D].成都:电子科技大学,2000. 被引量:1
  • 7Hamilton J.Time Series Analysis[M].Princeton University Press,1994. 被引量:1
  • 8Keogh E., Kasetty S.. On the need for time series data mining benchmarks: A survey and empirical demonstration. In: Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Edmonton, Alberta, Canada, 2002, 102~111. 被引量:1
  • 9Agrawal R., Faloutsos C.,Swami A.. Efficient similarity search in sequence databases. In: Proceedings of the 4th International Conference on Foundations of Data Organization and Algorithms, Chicago, IL, 1993, 69~84. 被引量:1
  • 10Seidl T., Kriegel H.P.. Optimal multi-step k-nearest neighbor search. In: Proceedings of the SIGMOD, Washington, 1998, 154~165. 被引量:1

共引文献127

同被引文献149

引证文献15

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部