期刊文献+

异方差非参数回归模型均值与方差变点的小波估计与应用 被引量:8

Wavelet estimators for change-points in mean and variance of nonparametric regression model and applications
原文传递
导出
摘要 金融市场中,受突发事件的影响反映资产平均收益的均值函数和反映资产收益波动的方差函数都有可能出现变点.本文讨论了均值和方差都存在变点的异方差非参数回归模型的变点估计问题.给出均值函数与方差函数的局部线性估计,利用函数小波系数的特性求得均值与方差变点位置的估计值并给出其收敛速度.在模拟实验中分析变点估计值的样本特性及均值变点估计与方差变点估计的相互影响.最后通过对两组股票数据的均值变点和方差变点进行估计,说明方法的有效性. In the practical application, abnormal fluctuations of the mean and variance of model are always possible. In this paper, a method based on wavelet coefficients is proposed to estimate the location of breaks in mean function and variance function of nonparametric regression model. The mean function and variance function can be estimated using local linear fitting. The convergence rate of these estimators are derived. The finite sample properties of the estimators are investigated and the impaction of the changes in mean and variance is analysed by comparing sample deviation, mean square error and standard deviations. Finally, we give practical example to estimate changes in a set of stock price data and HANG SENG INDEX usin~ the wavelet method.
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2013年第4期988-995,共8页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(60972150) 国家自然科学基金青年项目(61201323) 西北工业大学基础研究基金(JC20110277)
关键词 变点 非参数回归模型 小波估计 收敛速度 change point nonparametric regression model wavelet estimator the convergency rate
  • 相关文献

参考文献15

  • 1陈希孺.变点统计分析简介 (Ⅲ)极大似然法、累计次数法、Bayes法[J].数理统计与管理,1991,10(3):52-59. 被引量:19
  • 2Cs6rgo M, Horv-th L. Limit theorems in change-point analysis[M]. John Wiley and Sons Ltd, West Sussex, 1997. 被引量:1
  • 3陈占寿,田铮,丁明涛.线性回归模型参数变点的在线监测[J].系统工程理论与实践,2010,30(6):1047-1054. 被引量:14
  • 4Kokoszka P, Leipus R. Change point estimation in ARCH models[J]. Bernoulli, 2000, 6(3): 513-539. 被引量:1
  • 5Lee S, Tokutsu Y, Maekawa K. The residual cusum test for the constancy parameters in GARCH(1,1) models[J]. Journal of Japan Statist Soc, 2004, 34: 173-188. 被引量:1
  • 6赵文芝.线性过程方差变点和非参数回归函数模型变点的统计分析[D].西安:西北工业大学,2009. 被引量:1
  • 7Chen G, Choi Y K, Zhou Y. Nonparametric estimation of structural change points in volatility models for time series[J]. Journal of Econometrics, 2005, 126(1): 79-114. 被引量:1
  • 8秦前清,杨宗凯编著..实用小波分析[M].西安:西安电子科技大学出版社,1994:173.
  • 9Chen C, Choi Y K, Zhou Y. Detections of changes in return by a wavelet smoother with conditional heteroscedas- tic volatility[J]. Journal of Econometrics, 2008, 143(2): 227-262. 被引量:1
  • 10Zhou Y, Wan A T K, Xie S, et al. Wavelet analysis of change-points in a non-parametric regression with heteroscedastic variance[J]. Journal of Econometrics, 2010, 159(1): 183-201. 被引量:1

二级参考文献15

  • 1韩四儿,田铮,武新乾.一类股市波动性预测模型的多变点检验[J].系统工程理论与实践,2006,26(3):94-101. 被引量:15
  • 2Cs(o)rg(o) M,Horváth L.Limit Theorems in Change-Point Analysis[M].Wiley,Chichester,1997. 被引量:1
  • 3Bai J,Perron P.Estimation and testing for multiple structural changes in linear models[J].Econometrica,1998,66:47-78. 被引量:1
  • 4Lee S,Yokutsu Y,Maekawa K.The CUSUM test for parameter change in regression models with ARCH errors[J].Journal of the Japan Statistical Society,2004,34:173-188. 被引量:1
  • 5Chu C S J,Stinchcombe M,White H.Monitoring structural change[J].Econometrica,1996,64:1045-1065. 被引量:1
  • 6Horváth L,Hu(s)kova M,Kokoszka P,et al.Monitoring changes in linear modeis[J].Journal of Statistic Planning and Inference,2004,126:225-51. 被引量:1
  • 7Horváth L,Kokoszka P,Steinebach J.On sequential detection of parameter changes in linear regression[J].Statistics & Probability Letters,2007,77:885-895. 被引量:1
  • 8Aue A,Horváth L,Hu(s)kova M,et al.Change-point monitoring in linear models[J].Econometrics Journal,2006,9:373-403. 被引量:1
  • 9Zeileis A,Leisch F,Klei ber C,et al.Monitoring structural change in dynamic econometric models[J].Journal of Applied Econometrics,2005,20:99-121. 被引量:1
  • 10Andreou E,Ghysels E.Monitoring disruptions in financial markets[J].Journal of Econometrics,2006,135:77-124. 被引量:1

共引文献31

同被引文献112

引证文献8

二级引证文献101

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部