期刊文献+

矩形脉冲激励下斜支承系统易损件的冲击特性研究 被引量:7

Shock Characteristics of Vulnerable Components of Tilted Support System under Rectangular Pulse Excitation
下载PDF
导出
摘要 以考虑易损件的斜支承包装系统为研究对象,建立了矩形脉冲激励下系统无量纲非线性冲击动力学方程。利用龙格-库塔数值分析方法求解冲击动力学方程,以易损件加速度响应峰值与脉冲激励幅值之比为易损件的响应指标,脉冲激励时间、系统频率比作为变量,构建了易损件的三维冲击谱。分析讨论了系统支承角、脉冲激励幅值以及质量比等对冲击响应谱的影响规律。研究表明:随脉冲激励幅值增加,或随系统支承角减小,易损件加速度响应峰值增加且波动加剧;系统响应对低频率比较为敏感,增加频率比可抑制易损件加速度响应峰值,低频率比时增加质量比可降低易损件加速度响应峰值。研究结果可为斜支承包装系统的设计提供理论依据。 The dimensionless nonlinear dynamical equations of tilted support packaging system with vulnerable components were obtained under rectangular pulse excitation, and the numerical results of the shock response were studied using Runge-Kutta method. Three-dimensional shock response spectra was established with the ratio of the maximum shock response acceleration of the vulnerable components to the peak pulse acceleration, the pulse duration and the fre- quency ratio of system as three basic parameters. The effects of the angle of system, the peak pulse acceleration and mass ratio on the shock response spectra were discussed. The results showed that with the increase of the peak pulse acceleration, or the decrease of the angle, the maximum shock response acceleration of the vulnerable components increase rapidly, and the effect of low frequency ratio on response of system is particularly sensitive ; increasing frequen- cy ratio of the system can obviously decrease the maximum shock response acceleration of the vulnerable components, and the peak of the shock response of the vulnerable components decreases at low frequency ratio by increasing mass ratio. The purpose was to provide academic foundation for design of tilted support packaging system.
出处 《包装工程》 CAS CSCD 北大核心 2013年第7期21-24,共4页 Packaging Engineering
关键词 易损件 斜支承包装系统 矩形脉冲激励 冲击特性 三维冲击谱 vulnerable component tilted support packaging system rectangular pulse excitation shock characteristics three-dimensional shock response spectra
  • 相关文献

参考文献11

二级参考文献26

共引文献32

同被引文献78

引证文献7

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部