期刊文献+

凋亡破骨细胞的拉伸应变(英文)

Mechanical strain effects on osteoclast apoptosis in vitro
下载PDF
导出
摘要 背景:力学应变在骨重建中起重要作用。然而,力学应变是否影响破骨细胞的凋亡仍不清楚。目的:观察力学应变对体外培养破骨细胞凋亡的影响。方法:对小鼠单核细胞RAW264.7采用巨噬细胞集落刺激因子和破骨细胞分化因子诱导,抗酒石酸酸性磷酸酶染色和骨吸收实验确定成功诱导出了破骨细胞。实验共分为3组,对诱导的破骨细胞分别施加0(对照组),2500和5000με的基底拉伸应变3d,1h/次,1次/d。结果与结论:与对照组相比,生理强度载荷2500με阻止了破骨细胞的凋亡和线粒体膜电位的下降。但是,病理强度载荷5000με对破骨细胞的凋亡和线粒体膜电位没有影响。 BACKGROUND: Mechanical strain plays an important role in bone remodeling. However, it remains unclear that whether mechanical strain has an influence on osteoclast apoptosis. OBJECTIVE: To investigate the effects of mechanical strain on osteoclast apoptosis in vitro. METHODS: RAW264.7 cells were treated with macrophage colony-stimulating factor and receptor activator of nuclear factor kappa-B ligand. Then, tartrate-resistant acid phosphatase staining and resorption assay were used to confirm that whether mature osteoclasts were induced successfully. Then the induced osteoclasts were subjected to 0, 2 500 and 5 000 υε mechanical stretch strain for 3 days, once for 1 hour per day. RESULTS AND CONCLUSION: Compared to the control group, 2 500 υε mechanical stretch strain inhibited osteoclast apoptosis and the collapse of mitochondrial membrane potential. But, the cells subjected to 5 000 υε mechanical stretch strain showed no significant differences compared to the control group.
出处 《中国组织工程研究》 CAS CSCD 2013年第7期1201-1206,共6页 Chinese Journal of Tissue Engineering Research
基金 the National Natural Science Foundation of China,No.10832012~~
关键词 组织构建 组织构建与生物力学 力学应变 破骨细胞 凋亡 线粒体 骨重建 体外培养 生理强度载荷 病理强度载荷 线粒体膜电位 破骨细胞分化因子 国家自然科学基金 组织构建图片文章 tissue construction tissue construction and biomechanics mechanical strain osteoclastS apoptosis mitochondria bone remodeling in vitro culture physical loads pathological loads mitochondrial membrane potential receptor activator of nuclear factor-kappa B the National NaturalScience Foundation of China tissue construction photographs-containing paper
  • 相关文献

参考文献20

  • 1Martin RB. Toward a unifying theory of bone remodeling[J].{H}BONE,2000,(01):1-6. 被引量:1
  • 2Nakahama K. Cel ular communications in bone homeostasis and repair[J].Cel Mol Life Sci,2010,(23):4001-4009. 被引量:1
  • 3Liu H,Li B. p53 control of bone remodeling[J].J Cel Biochem,2010,(03):529-534. 被引量:1
  • 4Zelzer E,Olsen BR. The genetic basis for skeletal diseases[J].{H}NATURE,2003,(6937):343-348. 被引量:1
  • 5Rodan GA,Martin TJ. Therapeutic approaches to bone diseases[J].{H}SCIENCE,2000,(5484):1508-1514. 被引量:1
  • 6Boyle WJ,Simonet WS,Lacey DL. Osteoclast differentiation and activation[J].{H}NATURE,2003,(6937):337-342. 被引量:1
  • 7Quinn JM,Gil espie MT. Modulation of osteoclast formation[J].{H}Biochemical and Biophysical Research Communications,2005,(03):739-745. 被引量:1
  • 8Rubin J,Fan X,Biskobing DM. Osteoclastogenesis is repressed by mechanical strain in an in vitro model[J].{H}Journal of Orthopaedic Research,1999,(05):639-645. 被引量:1
  • 9Kurata K,Uemura T,Nemoto A. Mechanical strain effect on bone-resorbing activity and messenger RNA expressions of marker enzymes in isolated osteoclast culture[J].{H}Journal of Bone and Mineral Research,2001,(04):722-730. 被引量:1
  • 10Suzuki N,Yoshimura Y,Deyama Y. Mechanical stress directly suppresses osteoclast differentiation in RAW264.7 cel s[J].{H}International Journal of Molecular Medicine,2008,(03):291-296. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部