期刊文献+

基于Web日志挖掘的网页推荐方法 被引量:4

Web Recommender System Based on Web Log Mining
下载PDF
导出
摘要 针对传统单纯聚类算法实现网页推荐精确度欠缺的问题,提出一种基于Web日志挖掘的个性化网页推荐模型,并实现了相应的网页推荐算法,算法结合聚类分析和关联规则挖掘,能有效实现网页推荐.实验结果表明,在保障网页页面推荐覆盖率的条件下,该方法有较高的精确度、有效性和实用性. For the traditional Web recommendation based on clustering algorithms has low recommend accuracy,a Web recommended model based on Web log mining was proposed,and a main algorithm combined with fuzzy cluster and association rule mining was presented to realize the model.Experiments show the model and the algorithm keep the Web recommending covering rate and also have a higher accuracy.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2013年第2期267-272,共6页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:61163052 61073009 60873235) 国家高技术研究发展计划863项目基金(批准号:2011AA010101) 国家重点基础研究发展计划973项目基金(批准号:2009CB320706) 教育部新世纪优秀人才支持计划项目(批准号:NCET-06-0300)
关键词 网页推荐 模糊聚类 关联规则挖掘 WEB日志挖掘 Web page recommendation fuzzy clustering association rules mining Web log mining
  • 相关文献

参考文献10

  • 1YAN Liang, I.I Chun-ping. Incorporating Pageview Weight into an Association-Rule-Based Web Recommendation System [M]. Lecture Notes in Computer Science. Berlin: Springer, 2006.. 577 586. 被引量:1
  • 2杨正余,王卫平.基于用户访问序列的实时网页推荐研究[J].计算机系统应用,2008,17(5):50-53. 被引量:6
  • 3Forsati R, Meybodi M R. Effective Page Recommendation Algorithms Based on Distributed I.earning Automata and Weighted Association Rules [J] Expert System with Applications, 2010, 37(2): 1316-1330. 被引量:1
  • 4Gry M, Haddad H. Evaluation of Web Usage Mining Approaches for User's Next Request Prediction [C],// Proceedings of the Fifth ACM International Workshop on Web Information and Data Management. New York: ACM Press, 2003.. 74-81. 被引量:1
  • 5Jiang C I3, Wang H, Chert L. A Research on Personalized Recommendation Based on Web Log Mining [M]// Proceedings of 6th International Conference on Innovation and Management. Sao Paulo, Brazil.. s. n. 1, 2009: 1409-1415. 被引量:1
  • 6胡建武,何贞铭,张贻权.WEB日志挖掘及其实现[J].计算机工程与应用,2004,40(14):156-158. 被引量:13
  • 7Omran M G H, Engelbrecht A P, Salman A. An Overview of Clustering Methods [J] Intelligent Data Analysis, 2007, 11(6): 583 605. 被引量:1
  • 8Jain A K, Dubes R C. Algorithms for Clustering Data [M]. Trenton: Prentice-Hall, 1988: 1-334. 被引量:1
  • 9樊丽..基于Web日志挖掘的学习资源个性化推荐方法研究[D].吉林大学,2012:
  • 10Borgelt C, Kruse R. Induction of Association Rules: Apriori Implementation [C]//Proc 14th Conf on Computational Statistics. Berlin: Springer, 2002: 395-400. 被引量:1

二级参考文献12

  • 1Chen M S,Park J S,Yu P S et al. Efficient Data Mining for Path Traversal Pattems[J].IEEE Trans on Knowledge and Data Engineering (TKDE), 1998; 10(2) :209~221 被引量:1
  • 2Chen M S,Park J S,Yu P S.Data mining for path traversal patterns in a web environment[C].In:Proceedings of the 16th International Conference on Distributed Computing Systems, 1996: 385~392 被引量:1
  • 3Cooley R,Srivastava J.Data preparation for mining world wide web browsing patterns[J].Journal of Knowledge and Information System,1999;1(1):5~31 被引量:1
  • 4Mobasher B, Dai H, Luo T, Nakagawa M. Using Sequential and Non -Sequential Patterns in Predictive Web Usage Tasks. Proceeding of ICDM2002, 2002. 被引量:1
  • 5X Q Tan, M Yao, J K Zhang. Mining Maximal Frequent Access Sequences Based on Improved WAP - tree. Proceedings of the Sixth International Conference on Intelligent Systems Design and Applications (ISDA' 06), 2006. 被引量:1
  • 6M. El- Sayed, C. Ruiz, E.A. Rundensteiner. FS- miner: efficient and incremental mining of frequent sequence patterns in web logs. ACM, 2004. 被引量:1
  • 7Mobasher B, Dai H, Luo T. Discovery of aggregate usage profiles for web personalization[ C]. Proceedings of the ACM SIGKDD, 2000:142 - 151. 被引量:1
  • 8Mobasher B, Dai H, Luo T, et. al. Effective Personalization Based on Association Rule Discovery from Web Usage Data [ C ]. Proceedings of ACM Workshop on Web Information and Data Management (W IDM ),2001: 103 - 112. 被引量:1
  • 9HAN JW, KAMBER M. Data Mining: Concepts and Techniques [ M ]. San Mateo, CA: Morgan Kaufmann, 2000. 被引量:1
  • 10Depaul CT1 web usage mining data[ OL]. http://maya. cs. depaul.edu/-classes/etc584/resource.html 被引量:1

共引文献17

同被引文献25

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部