期刊文献+

多孔硅材料光学Anderson局域的研究

Study of the Optical Anderson localization of Silicon Material
原文传递
导出
摘要 本文基于Anderson局域效应和有限时域差分(FDTD)计算方法,对具有一定无序性的多孔硅材料内光的横向局域进行了理论分析,考察了不同无序度、孔洞排列的不同方式对硅材料光学性质的影响。计算结果表明,多孔硅内光的行为和多孔硅的结构参数有很大关系。当结构参数合适时,光束可以呈现比较明显的横向局域效果。适当改变材料中孔道的排列方式,可以有效的调节光在材料中的传播方式与局域效果。设计了具有"边墙"效果的孔洞排列方式,不仅能够固定光斑的位置,而且还可实现光束的局域增强效果。 Based on the Anderson localization effect and the finite difference time domain (FDTD) method, the photonic energy in porous silicon whose pores is disordered trans versely have been calculated. We have calculated the optical properties of the silicon mate, rials with different disorder degree and different distribution of the holes. The results show that the behavior of light in porous silicon depends strongly on the structural param eters. When the suitable structural parameters calization effect transversely. The propagation fectively adjusted by changing the arrangement are chosen, the beam presents obvious lo and localization of optical beam can be ef of the holes. With designing a "sidewall" effect in the arrangement of the holes, we not only have achieved that the spot can be fixed at a fixed position, but also have showed the effect of localization enhancement in the hole distribution of the silicon materials.
出处 《光散射学报》 北大核心 2013年第1期13-18,共6页 The Journal of Light Scattering
基金 国家自然科学基金(60878025 11074131) 财政部教育部中央高校基本科研业务费专项资金(65010821) 南开大学物理学基地(J0730315) 国家基础科学人才培养基金(J1103208)
关键词 光学横向局域 有限时域差分(FDTD) 多孔硅 无序性 optical transverse localization finite difference time domain (FDTD) poroussilicon disorder
  • 相关文献

参考文献16

  • 1Schwartz T, Bartal G, Fishman G, et al. Trans- port and Anderson localization in disordered two- dimensional photonic lattices [J]. Nature, 2007, 446: 52--55. 被引量:1
  • 2Wang Y Z, Li F M, Kishimoto K, etal. Wave lo- calization in two-dimensional periodic systems with randomly disordered size[J]. Phys J B, 2009, 501 --505. 被引量:1
  • 3Kurose T, Tsuruta K, Totsuji C, et al. FDTD simulations of acoustic waves in two-dimensional photonic crystals using parallel computer [J ]. Memoirs of the Faculty of Engineering, Okayama University, 2009, 43: 16--21. 被引量:1
  • 4Gowri S, Alejandro A, Daniel M. Nonlinear local- ization of light in disordered optical fiber arrays [J]. Phys Rev A, 2008, 77: 063806. 被引量:1
  • 5Patterson M, Hughes S, Combrie S, etal. Disor- der-induced coherent scattering in slow-light pho- tonic crystal waveguides [J]. Phys Rev Lett, 2009, 102: 253903. 被引量:1
  • 6Nakayama Y, Pauzauskie P J, Radenovie A, et al. Tunable nanowire nonlinear optical probe[J]. Nature, 2007, 447: 1098--1102. 被引量:1
  • 7Boukai A I, Bunimovich Y, Kheli J T, etal. Sili- con nanowires as efficient thermoelectric materials [J]. Nature, 2008, 451: 168--171. 被引量:1
  • 8Zhu J, Yu Z, Burkhard G F, et al. Optical ab- sorption enhancement in amorphous silicon nanowire and nanocone arrays [J]. Nano Lett, 2009, 9(1): 279--282. 被引量:1
  • 9Murzina T V, Sychev F Y, Kolmychek I A, et al. Tunable ferroelectric photonic crystals based on porous silicon templates infiltrated by sodium ni- trite[J]. Appl Phys Lett, 2007, 90: 161120. 被引量:1
  • 10Chun I S, Chow E K, Li X L. Nanoseale three dimensional pattern formation in light emitting porous silicon[J]. Appl Phys Lett, 2008, 92: 191113. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部