期刊文献+

利用概率结构稀疏模型实现信号重构的新算法 被引量:1

Signal reconstruction algorithm based on the probabilistic structured sparse model
下载PDF
导出
摘要 为更好地描述信号的结构稀疏性,构造了一种概率结构稀疏模型,并用于压缩感知信号重构问题.在对结构稀疏模型分析的基础上,不直接对信号的结构稀疏性进行描述,而是利用玻耳兹曼分布对其支撑的结构稀疏性进行先验描述,然后基于贝叶斯压缩感知理论,通过该先验分布和观测过程的高斯似然性,由观测值和观测矩阵求解信号支撑的最大后验估计,最后由信号支撑求解原信号.实验结果表明,对于已知信号支撑的稀疏信号,该方法重构性能明显优于BP和OMP法;对于一般的稀疏高斯随机信号,在高观测噪声水平和低重构误差容限条件下,其重构性能具有较大优势. In order to describe structured sparsity of the signal accurately, a probabilistic structured sparse model is constructed for signal reconstruction in compressive sensing(CS). Based on the structured sparse model, Boltzmann distribution is introduced to describe structured sparsity of the signal support rather than to describe the signal directly. Based on Bayesian CS, the maximum a posterior estimate of signal support is computed with the prior distribution and the Gaussian likelihood model of measurement, and then the signal is reconstructed using signal support. Experimental results show that, for the signal with the support known, the proposed algorithm is obviously superior to BP and OMP and that for the signal with the support unknown, its performance outperforms that of BP and OMP in the condition of a high measurement noise level and low reconstruction error tolerance.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2013年第2期194-200,共7页 Journal of Xidian University
基金 国家自然科学基金资助项目(61175029) 国家部委科技重点实验室基金资助项目(9140c610301080c6106 9140c6001070801) 航空科学基金资助项目(20115896022)
关键词 压缩感知 结构稀疏模型 信号支撑 玻耳兹曼分布 compressive sensing structured sparse model signal support Boltzmann distribution
  • 相关文献

参考文献18

  • 1Candes E, Romberg J, Tao T. Stable Signal Recovery from Incomplete and Inaccurate Information[J]. Communications on Pure and Applied Mathematics, 2006, 59(8): 1207-1233. 被引量:1
  • 2Candes E, Romberg J, Tao T. Robust Uncertainty Principles: Exact Signal Reconstruction form Highly Incomplete Frequency Information[J]. IEEE Trans on Information Theory, 2006, 52(2) : 489-509. 被引量:1
  • 3刘海英,李云松,吴成柯,吕沛.一种高重构质量低复杂度的高光谱图像压缩感知[J].西安电子科技大学学报,2011,38(3):37-41. 被引量:13
  • 4练秋生,肖莹.基于小波树结构和迭代收缩的图像压缩感知算法研究[J].电子与信息学报,2011,33(4):967-971. 被引量:10
  • 5Baraniuk R G, Cevher V, Marco T D, et al. Model-based Compressive Sensing[J]. IEEE Trans on Information Theory, 2010, 56(4): 1982-2001. 被引量:1
  • 6He L, Carin L. Exploiting Structure in Wavelet-based Bayesian Compressive Sensing [J]. IEEE Trans on Signal Processing, 2009, 57(9): 3488-3497. 被引量:1
  • 7La C, Do M N. Tree-based Orthogonal Matching Pursuit Algorithm for Signal Reconstruction [C]//Proc of IEEE International Conference on Image Processing. Atlanta: IEEE, 2006: 1277-1280. 被引量:1
  • 8Eldar Y C, Kuppinger P, Bolcskei H. Compressed Sensing of Block-sparse Signals: Uncertainty Relations and Efficient Recovery[J]. IEEE Trans on Signal Processing, 2010, 58(6) : 3042-3054. 被引量:1
  • 9Eldar Y C, Mishali M. Robust Recovery of Signals from a Structured Union of Subspaces [J]. IEEE Trans on Information Theory, 2009, 55(11): 5302-5316. 被引量:1
  • 10Crouse M S, Nowak R D, Baraniuk R G. Wavelet-based Statistical Signal Processing Using Hidden Markov Models[J]. IEEE Trans on Signal Processing, 1998, 46(4) : 886-902. 被引量:1

二级参考文献29

  • 1Donoho D L. Compressed sensing [J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. 被引量:1
  • 2Candes E J, Romberg J, and Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information [J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509. 被引量:1
  • 3Chert S B, Donoho D L, and Sannders M A. Atomic decomposition by basis pursuit[J]. SIAM Journal on Scientific Computing, 1998, 20(1): 33-61. 被引量:1
  • 4Figueiredo M A T, Nowak R D, and Wright S J. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 586-597. 被引量:1
  • 5Blumensath T and Davies M E. Iterative hard thresholding for compressed sensing [J]. Applied and Computational Harmonic Analysis, 2009, 27(3): 265-274. 被引量:1
  • 6Mallat S and Zhang Z. Matching pursuits with timefrequency dictionaries[J]. IEEE Transactions on Signal Processing, 1993, 41(12): 3397-3415. 被引量:1
  • 7Tropp J A and Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit [J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666. 被引量:1
  • 8Needell D and Vershynin D. Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit [J]. Foundations of Computational Mathematics, 2009, 9(3): 317-334. 被引量:1
  • 9Needell D and Tropp J A. CoSaMP: iterative signal recovery from incomplete and inaccurate samples [J]. Applied and Computational Harmonic Analysis, 2008, 26(3): 301-321. 被引量:1
  • 10Lu Y M and Do M N. Sampling signals from a union of subspaces[J]. IEEE Signal Processing Magazine, 2008, 25(2): 41-47. 被引量:1

共引文献21

同被引文献17

  • 1Donoho D. Compressive sampling[J]. IEEE Transactious on Information Theory, 2006, 52(4): 1289-1306. 被引量:1
  • 2Donoho D L, Tsaig Y. Extension of compressed sensing[J]. Signal Processing, 2006, 86(3): 533-548. 被引量:1
  • 3Do T T, Gan L, Nguyen N, et al. Sparsity adaptive mating pursuit algorithm for practical compressed sensing[C]// Asilomar Conference on Signals, Systems and Computers. Pacific Grove, California, 2008: 581-587. 被引量:1
  • 4Aybat N S, lyengar G. A first-order augmented Lagrangian method for compressed sensing[J]. SIAM Journal on Optimization, 2012, 22(2): 429-459. 被引量:1
  • 5Sun H, Ni L. Compressed sensing data reconstruction using adaptive generalized orthogonal matching pursuit algorithm[C]// 2013 3rd International Conference on Computer Science and Network Technology (ICCSNT). Dalian, China: IEEE, 2013: 1102-1106. 被引量:1
  • 6Chi Y J, Scharf L L, Pezeshki A. Sensitivity to basis mismatch in compressed sensing[J]. IEEE Transactions on Signal Processing, 2012, 59(5): 2182-2195. 被引量:1
  • 7BAO Guaagzhao, YE Zhongfu, XU Xu, et al. Approach to blind scparation of speech mixture based on a two-layer sparsity model[J]. IEEE Transactions on Audio Speech and Language Processing Sensing Compressed, 2013, 21 (5): 899-906. 被引量:1
  • 8高睿,赵瑞珍,胡绍海.基于压缩感知的变步长自适应匹配追踪重建算法[J].光学学报,2010,30(6):1639-1644. 被引量:48
  • 9JEON Yu-yong,LEE Sang-min.A speech enhancement algorithm to reduce noise and compensate for partial masking effect[J].Journal of Central South University,2011,18(4):1121-1127. 被引量:4
  • 10孙林慧,杨震.基于自适应基追踪去噪的含噪语音压缩感知[J].南京邮电大学学报(自然科学版),2011,31(5):1-6. 被引量:20

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部