期刊文献+

基于函数值的二元混合插值格式 被引量:1

The Bivariate Blend Interpolation Form Based on Function Values
下载PDF
导出
摘要 运用插值与逼近方法解决曲线,曲面造型问题是计算机辅助几何设计最基础的课题。3/1型有理插值具有单调性、连续性、收敛性及保凸性的性质,但它的导数参数一般是未知的。利用3/1型有理插值函数与标准的三次Hermite插值进行类似于张量积的处理,并用插值节点处差商代替参数导数,构造了二元混合有理差值格式,并通过数据实例说明它在计算机辅助设计中的灵活性、有效性。 Applying the method of interpolation and approximation is most basic issu-es to solve curve and surface modeling on computer-aided geometric design. 3/1 ratio-hal interpolation has the nature of monotonicity, continuity, convergenceand convexity preserving, but its derivative parameters are generally unknown. In this paper, using th-e 3/1 rational interpolation function, standard cubic Hermite interpolation similar to t-he tensor product processing and difference quotientat interpolation nodes instead of the parameter derivative construct a format of bivariate blending rational dofference explain its flexibility and effectiveness in the computer-aided design through data inst-ances.
出处 《软件导刊》 2013年第3期17-19,共3页 Software Guide
关键词 计算机辅助设计 有理插值 函数值 插值格式 Computer-Aided Design Rational Interpolation Function Value Interpolation Form
  • 相关文献

参考文献5

二级参考文献13

  • 1张希华,包芳勋,刘爱奎,段奇.一种有理插值曲线的保凸控制问题[J].工程图学学报,2005,26(2):77-82. 被引量:8
  • 2邓四清,方逵,谢进.一类基于函数值的有理三次样条曲线的形状控制[J].工程图学学报,2007,28(2):89-94. 被引量:19
  • 3孙家昶.样条函数与计算几何[M].北京:科学出版社,1982.. 被引量:24
  • 4Duan Q, Djidjeli K, Price W G, etal. A rational cubic spline based on function values[J]. Computer & Graphics, 1998, 22(4) : 479-486 被引量:1
  • 5Duan Q, Wang L, Twizell E H. A new Cz rational interpolation based on function values and constrained control of the interpolation curves [J]. Applied Mathematics and Computation, 2005, 161(1): 311-322 被引量:1
  • 6Duan Q, Wang L, Twizell E H. A new bivariate rational interpolation based on function values [J]. Information Sciences, 2004, 166(1/4): 181-191 被引量:1
  • 7Sarfraz M, Butt S, Hussain M Z. Visualization of shaped data by a rational cubic spline interpolation [J]. Computer Graphics, 2001, 25(5):833-845 被引量:1
  • 8Sarfraz M. A rational cubic spline for the visualization of monotonic data: an alternate approach [J]. Computer & Graphics, 2003, 27(1): 107-121 被引量:1
  • 9Sarfraz M, Hussain M Z. Data visualization using rational spline interpolation [J]. Journal of Computational and Applied Mathematics, 2006, 189(1/2): 513-525 被引量:1
  • 10Duan Q, Zhang H, Zhang Y, et al. Error estimation of a kind of rational spline [J]. Journal of Computational and Applied Mathematics, 2007, 200(1): 1-11 被引量:1

共引文献4

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部