摘要
运用插值与逼近方法解决曲线,曲面造型问题是计算机辅助几何设计最基础的课题。3/1型有理插值具有单调性、连续性、收敛性及保凸性的性质,但它的导数参数一般是未知的。利用3/1型有理插值函数与标准的三次Hermite插值进行类似于张量积的处理,并用插值节点处差商代替参数导数,构造了二元混合有理差值格式,并通过数据实例说明它在计算机辅助设计中的灵活性、有效性。
Applying the method of interpolation and approximation is most basic issu-es to solve curve and surface modeling on computer-aided geometric design. 3/1 ratio-hal interpolation has the nature of monotonicity, continuity, convergenceand convexity preserving, but its derivative parameters are generally unknown. In this paper, using th-e 3/1 rational interpolation function, standard cubic Hermite interpolation similar to t-he tensor product processing and difference quotientat interpolation nodes instead of the parameter derivative construct a format of bivariate blending rational dofference explain its flexibility and effectiveness in the computer-aided design through data inst-ances.
出处
《软件导刊》
2013年第3期17-19,共3页
Software Guide
关键词
计算机辅助设计
有理插值
函数值
插值格式
Computer-Aided Design
Rational Interpolation
Function Value
Interpolation Form