期刊文献+

基于改进雷达图的可视化聚类方法研究 被引量:2

Research on visualization clustering method based on improved radar chart
下载PDF
导出
摘要 针对高维数据的聚类过程不够直观、聚类结果也不易解释的问题,本文提出了一种基于改进雷达图的交互式可视化聚类方法。首先对传统雷达图进行了改进,采用熵权法确定数据的主要特征和属性排列,在去掉非主要特征基础上采用以极径表示属性值,以属性权重确定极角的改进雷达图进行数据可视化来突出数据的主要特征;然后采用改进的k-means算法对平面上的点集进行聚类,该改进算法不需事先给定簇的个数,能够依据密度和距离对初始中心进行优化,且在聚类过程中可交互调整参数,并使用不同颜色来区分不同类别,方便观察聚类过程和结果;最后通过仿真实验表明改进的雷达图更能反应数据的分布情况,改进的聚类算法具有更高的效率和聚类准确度。 A clustering method based on interactive visualization of radar chart is proposed.First,entropy-weight is adopted to determine the main features and arrange them.Removing the non-main feature from the original data,every data is described in an improved radar chart.The polar radius stands by the attribute weights.The polar angle stands by entropy-weight.Then the points in the radar chart are clustered through applying an improved-means algorithm.The number of clusters is not given before and the initial centers are optimized according to the point density and distance.Finally,the experiments show that the improved radar chart reflects the distribution of the data better and that the improved-means algorithm is more efficient and accuracy.
出处 《燕山大学学报》 CAS 2013年第1期58-62,共5页 Journal of Yanshan University
基金 国家自然科学基金资助项目(60970073)
关键词 可视化 雷达图 聚类 K-MEANS 权重 visualization radar chart clustering -means entropy weight
  • 相关文献

参考文献10

  • 1MacQueen J. Some methods for classification and analysis of mul- tivariate observations [C] //Proc of the 5th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, USA, 1967: 281-297. 被引量:1
  • 2Linde Y, Buzo A, Gary R. An algorithm for vector quantizer design [J]. IEEE Transactions on Communication, 1980,28 (1): 84-95. 被引量:1
  • 3Chomicki J, Godfrey P, Gryz J, et al.. Skyline with presorting: theory and optimization [C] //Proc of the International Conference on Intelligent Information Systems,Gdansk, Poland,2005:216-225. 被引量:1
  • 4Kanungo T, Mount D M, Netanyaha N S, et al.. An efficient k- means clustering algorithm: analysis and implementation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002,24 (7): 881-892. 被引量:1
  • 5单玉双,邢长征.一种更有效的K-means聚类算法[J].计算机系统应用,2009,18(8):96-99. 被引量:5
  • 6黄震华,向阳,张波,王栋,刘啸岭.一种进行K-Means聚类的有效方法[J].模式识别与人工智能,2010,23(4):516-521. 被引量:27
  • 7汪中,刘贵全,陈恩红.一种优化初始中心点的K-means算法[J].模式识别与人工智能,2009,22(2):299-304. 被引量:140
  • 8Kalyani S, Swarup K S. Particle swarm optimization based K- means clustering approach for security assessment in power sys- tems [J]. Expert Systems with Applications, 2011,38 (9): 10839-10846. 被引量:1
  • 9Damodar Reddy, Prasanta K Jana. Initialization for K-means clustering using Voronoi diagram [J]. Procedia Technology, 2012,4: 395-400. 被引量:1
  • 10宋佳霖,孟辉,王立强,洪文学.一种多元图图形特征向球面坐标映射的可视化方法[J].燕山大学学报,2010,34(2):115-118. 被引量:2

二级参考文献35

  • 1李永森,杨善林,马溪骏,胡笑旋,陈增明.空间聚类算法中的K值优化问题研究[J].系统仿真学报,2006,18(3):573-576. 被引量:39
  • 2陈晓云,王平,何春霞,冷明伟.基于三角不等式原理的TTSAS聚类加速算法[J].计算机工程,2006,32(17):97-99. 被引量:1
  • 3钱线,黄萱菁,吴立德.初始化K-means的谱方法[J].自动化学报,2007,33(4):342-346. 被引量:32
  • 4Han J, Kamber M. Data Mining Concepts and Techniques. Orlando, USA: Morgan Kaufmann Publishers, 2001 被引量:1
  • 5Huang J Z, Ng M K, Rang Hongqiang, et al. Automated Variable Weighting in K-means Type Clustering. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27 (5) : 657 - 668 被引量:1
  • 6Dhillon I S, Guan Yuqiang, Kogan J. Refining Clusters in High Dimensional Text Data//Proc of the 2nd SIAM Workshop on Clustering High Dimensional Data. Arlington, USA, 2002 : 59 - 66 被引量:1
  • 7Zhang B. Generalized K-Harmonic Means: Dynamic Weighting of Data in Unsupervised Learning//Proc of the 1 st SIAM International Conference on Data Mining. Chicago, USA, 2001 : 1 - 13 被引量:1
  • 8Sarafis I, Zalzala A M S, Trinder P W. A Genetic Rule-Based Data Clustering Toolkit//Proc of the Congress on Evolutionary Computation. Honolulu, USA, 2002 : 1238 - 1243 被引量:1
  • 9Ma J, Perkins S. Time-Series Novelty Detection Using One-Class Support Vector Machines// Proc of the International Joint Conference on Neural Networks. Portland, USA, 2003, Ⅲ: 1741 - 1745 被引量:1
  • 10Kaufman L,Rousseeuw P J. Finding Groups in Data: An Introduction to Cluster Analysis. New York, USA: John Wiley & Sons, 1990 被引量:1

共引文献168

同被引文献13

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部