期刊文献+

融合QA-SDS的MODIS NDVI时序数据重构 被引量:4

MODIS NDVI Time-series Data Reconstruction Integrating with the Quality Assessment Science Data Set(QA-SDS)
原文传递
导出
摘要 基于云南省MOD13Q1时序数据,对比分析了不同质量设置(UI5、UI5-CSS、UI3、UI3-CSS)和不同时序重构方法(简单线性插值、Savitzky-Golay滤波、非对称高斯函数拟合法和双逻辑函数拟合法)组合下NDVI时序重构效果。结果表明:NDVI时序中无效像元数和最大间隙长度在时间和地域上的分布差异受气候干、雨季影响显著。非对称高斯函数拟合法和双逻辑函数拟合法的稳健性和拟合效果较优。NDVI时序中无效像元最大间隙长度是衡量数据质量优劣和时序重构可行性的重要指标,雨季降水和多云天气过于集中是影响云南省境内部分地区时序重构质量提升的关键。基于重构NDVI时序,云南省全境NDVI时空分布呈现雨季大于干季、西部大于东部、南部高于北部、河谷大于山地的特征。 Satellite-derived NDVI time series are often contaminated by negative atmospheric conditions and sunsen- sor-surface viewing geometries. The reconstruction of high quality NDVI time-series is crucial to the detection of long-term vegetation cover changes and the remote sensing of vegetation phenology. In this paper, MOD13Q1 time- series data covered in Yunnan province were employed to address the performance effectiveness of time-series data reconstruction methods (e. g. linear interpolation, Savitzky-Golay filtering, asymmetric Gaussian and double logistic function-fitting) through integrating with different quality setting (e. g. UIS,UIS-CSS,UI3,UI3-CSS). The results show that seasonal and regional variations in the number and the maximum gap length of invalid pixels of time-se- ries data were mainly controlled by local climate. A comparison of four selected methods revealed that the superiori- ty of the robustness and fitting capability of asymmetric Gaussian and double logistic function-fitting methods over the other fitting techniques. The maximum gap length of invalid pixels in time-series data is an important data qual- ity indicator reflecting the feasibility for meaningful reconstruction. Concentrated clouds and precipitation in the rainy season is a crucial factor of influencing the fitting accuracy of the reconstructed time-series data in some parts of the study area. The reconstructed NDVI time-series data show that the NDVI values are higher in the rainy sea- son than those in the dry season,higher in the western than those in the eastern,higher in the southern than those in the northern, and hi^her in the river vallev than those in the uplands in the study area.
作者 樊辉
出处 《遥感技术与应用》 CSCD 北大核心 2013年第1期90-96,共7页 Remote Sensing Technology and Application
基金 国家自然科学基金项目(41061010) 云南省应用基础研究面上项目(2010ZC002) "十二五"支撑计划(2011BAC09B07)资助
关键词 MODIS NDVI 时序分析 数据质量评价 云南省 MODIS NDVI ~ Time-series analysis Data quality evaluation ~ Yunnan province
  • 相关文献

参考文献12

  • 1Hird J N, McDermid G J. Noise Reduction of NDVI Time Se- ries : An Empirical Comparison of Selected Techniques[J]. Re- mote Sensing of Environment, 2009,113(1) : 248-258. 被引量:1
  • 2李儒,张霞,刘波,张兵.遥感时间序列数据滤波重建算法发展综述[J].遥感学报,2009,13(2):335-341. 被引量:72
  • 3Verhoef W, Menenti M, Azzali S. A Colour Composite of NO AA-AVHRR-NDVI based on Time Series Analysis (1981-1992)[J]. International Journal of Remote Sensing, 1996,17 (2).-231 235. 被引量:1
  • 4Chen J, J onsson P, Tamura M, et al. A Simple Method for Re- constructing a High-quality NDVI Time series Data Set based on the Savitzky-Golay Filter[J]. Remote Sensing of Environ ment,2004,91(3-4) :332-344. 被引量:1
  • 5Jonsson P,Eklundh L. TIMESAT--A Program for Analy zing Time-series of Satellite Sensor Data [J]. Computers Geosciences, 2004,30(8) : 833-845. 被引量:1
  • 6Ma M G,Veroustraete F. Reconstructing Pathfinder AVHRR Land NDVI Time-series Data for the Northwest of China [C]// Singh R P,Shea M A,Eds. ,Natural Hazards and Oce- anographic Processes from Satellite Data. Oxford: Elsevier, 2006. 被引量:1
  • 7Beck P S A,Atzberger C, Hogda K A, et al. Improved Moni toring of Vegetation Dynamics at Very High Latitudes: A New Method Using MODIS NDVI[J]. Remote Sensing of En- vironment, 2006,100(3) : 321-334. 被引量:1
  • 8Bruce L, Mathur A, Byrd J J. Denoising and Wavelet-based Fea- ture Extraction of MODIS Multbtemporal Vegetation Signatures[J]. GIseienee ~ Remote Sensing, 2006,43(1) :67-77. 被引量:1
  • 9Sakamoto T, Yokozawa M, Toritani H, et al. A Crop Phenolo- gy Detection Method Using Time-series MODIS Data[J]. Re- mote Sensing of Environment, 2005,96 (3-4) : 366-374. 被引量:1
  • 10Colditz R R, Conrad C, Wehrmann T,et al. TiSeG : A Flexible Software Tool for Time-series Generation of MODIS Data U tilizing the Quality Assessment Science Data Set[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46 (10) :3296-3308. 被引量:1

二级参考文献17

共引文献90

同被引文献57

引证文献4

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部