摘要
利用Littlewood-Paley分解及权估计,在Triebel-Lizorkin空间上得到了一类奇异积分算子在Tf(x)=+∞∑j=-∞ Kj*f(x))的有界性.作为应用,对粗糙核奇异积分算子TΩf(x)=p.v.∫R″(Ω(y)/ρ(y)^β)f(x-y)dy,也得到了相应的结果,从而推广了已有结果.
It is well-known that the Triebel-Lizorkin space F·α,qp(Rn) is a unified setting of many well-known function spaces including Lebesgue spaces Lp(Rn),the Hardy spaces Hp(Rn) and the Sobolev spaces Lαp(Rn).So it is very meaningful to study the boundedness on Triebel-Lizorkin spaces for sigular integral operators.For a class of sigular integral operators defined by Tf(x)=+∞∑j=-∞ Kj*f(x),the boundedness on Triebel-Lizorkin spaces are obtained by using the Littlewood-Paley decomposition and the estimates of weight.As a application,for the rough kernel singular integral defined by TΩf(x)=p.v.∫R″(Ω(y)/ρ(y)^β)f(x-y)dydy.the corresponding result is also obtained.Therefore,the known result are extended.
出处
《内蒙古师范大学学报(自然科学汉文版)》
CAS
北大核心
2013年第1期5-7,共3页
Journal of Inner Mongolia Normal University(Natural Science Edition)
基金
国家自然科学基金资助项目(10761005
11161042
11261035)
内蒙古自治区高等学校科学研究项目(NJZZ12198)