期刊文献+

一类算子在Triebel-Lizorkin空间的有界性

A Class of Operator Bounded on Triebel-Lizorkin Spaces
下载PDF
导出
摘要 利用Littlewood-Paley分解及权估计,在Triebel-Lizorkin空间上得到了一类奇异积分算子在Tf(x)=+∞∑j=-∞ Kj*f(x))的有界性.作为应用,对粗糙核奇异积分算子TΩf(x)=p.v.∫R″(Ω(y)/ρ(y)^β)f(x-y)dy,也得到了相应的结果,从而推广了已有结果. It is well-known that the Triebel-Lizorkin space F·α,qp(Rn) is a unified setting of many well-known function spaces including Lebesgue spaces Lp(Rn),the Hardy spaces Hp(Rn) and the Sobolev spaces Lαp(Rn).So it is very meaningful to study the boundedness on Triebel-Lizorkin spaces for sigular integral operators.For a class of sigular integral operators defined by Tf(x)=+∞∑j=-∞ Kj*f(x),the boundedness on Triebel-Lizorkin spaces are obtained by using the Littlewood-Paley decomposition and the estimates of weight.As a application,for the rough kernel singular integral defined by TΩf(x)=p.v.∫R″(Ω(y)/ρ(y)^β)f(x-y)dydy.the corresponding result is also obtained.Therefore,the known result are extended.
出处 《内蒙古师范大学学报(自然科学汉文版)》 CAS 北大核心 2013年第1期5-7,共3页 Journal of Inner Mongolia Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(10761005 11161042 11261035) 内蒙古自治区高等学校科学研究项目(NJZZ12198)
关键词 粗糙核 奇异积分算子 TRIEBEL-LIZORKIN空间 singular integral rough kernel Triebel-Lizorkin spaces
  • 相关文献

参考文献2

二级参考文献28

  • 1Fabes, E., Riviere, N.: Singular integrals with mixed homogeneity. Studia Math., 27, 19-38 (1966). 被引量:1
  • 2Palagachev, D., Softova, L.: Singular integral operators, Morrey spaces and fine regularity of solution to PDE's. Potential Anal., 20, 237-263 (2004). 被引量:1
  • 3Macias, R., Segovia, C.: Weighted norm inequalities for parabolic fractional integrals. Studia Math., 49, 279-291 (1977). 被引量:1
  • 4Nagel, A., Rivi~re, N.: On Hilbert transform along curves, Ⅱ. Amer. J. Math., 98, 395-403 (1976). 被引量:1
  • 5Hung Viet, L.: singular integrals with mixed homogeneity Triebel-Lizorkin spaces. J. Math. Anal. Appl., 345, 903-916 (2008). 被引量:1
  • 6Chen, Y., Ding, Y.: L^p Bounds for the commutator of parabolic singular integral with rough kernel. Potential Anal., 27, 313-334 (2007). 被引量:1
  • 7Calderon, A. P.: Singular integrals. Bull. Amer. Math. Soc., 72, 427-465 (1966). 被引量:1
  • 8Chen, J., Fan, D.: Singular integral operators on function spaces, J. Math. Anal. Appl., 276, 691-708 (2002). 被引量:1
  • 9Grafakos, L., Stefanov, A.: L^p bounds for singular integral and maximal singular integrals with rough kernels. Indiana Univ. Math. J., 31, 877-888 (2001). 被引量:1
  • 10Tao, S., Feng, J.: The weak-type estimates for a class of multilinear singular integral operators. Acta Mathematiea Siniea, Chinese Series, 52, 515-522 (2009). 被引量:1

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部