期刊文献+

基于特征融合聚类的JPEG盲隐写分析

JPEG BLIND STEGANALYSIS BASED ON FEATURE FUSION AND CLUSTERING
下载PDF
导出
摘要 传统隐写分析所需的隐写算法、嵌入率和图像来源等先验知识在实用中很难满足,上述条件未知的盲隐写分析场景下,使用聚类分析方法可以有效区分隐写者与非隐写者。设计一种适合所选特征的融合方案,用以提高JPEG聚类隐写分析的准确率,将偏序Markov模型特征的主成分与校准特征融合,充分利用特征互补并降低冗余,可以在参与者中更好地识别出隐写者,从而提高识别准确率。实验结果表明,在不同隐写算法和嵌入率条件下,采用该方法比现有方法准确率平均提高约2%,最高提高约16%。 The prior knowledge for traditional steganalysis,such as steganography algorithms,embedding rates and sources of images,etc.,is difficult to be satisfied in practice.In the scenario of blind steganalysis that the above conditions are unknown,analysis using clustering can effectively distinguish between the actor who performs steganography and the others.We propose a method for fusion which is suitable for the selected features,and is to improve the accuracy of JPEG's steganalysis via clustering.It fuses the principal components of the feature based on partially ordered Markov models with the feature based on calibration,and makes full use of complementarity between features as well as reduces the redundancy,identifies out of the guilty actor better and improves the accuracy of identifying actors who perform steganography.Experimental results show that by different steganography approaches and in different embedding rate conditions,using our scheme can obtain a general increase in the accuracy of JPEG steganalysis by about 2% compared to the existing methods,and get a highest accuracy up to 16%.
出处 《计算机应用与软件》 CSCD 北大核心 2013年第3期7-9,34,共4页 Computer Applications and Software
基金 国家自然科学基金项目(61170281) 北京市自然科学基金项目(4112063) 中国科学院战略性先导科技专项项目(XDA06030601) 中国科学院信息工程研究所内部项目(Y1Z0041101 Y1Z0051101)
关键词 特征融合 聚类 隐写分析 PCA Feature fusion Clustering Steganalysis Principal component analysis
  • 相关文献

参考文献8

  • 1Pevny T, FridrichL Merging Markov and DCT features for multi-class JPEG steganalysis [ C ]//Proceedings of the Society of Photo-optical In- strumentatian Engineers, San Jose, CA, USA, Jan. 29-Feb. 1, Bell- ingham: SPIE Press, 2008 : 1 - 13. 被引量:1
  • 2Davidson J, Jalan J. Steganalysis using partially ordered Markov mod- els[ C ]//Proceedings of 12th International Workshop on Information Hiding, Calgary, AB, CANADA, Jun. 28 - 30, Berlin : Springer-Ver- lag, 2010:143 - 157. 被引量:1
  • 3Fridfich J, Kodovsky J, Holub V, et al. Breaking HUGO - the process discovery [ C ]//Proceedings of 13th International Workshop on Information Hiding, Prague, Czech Republic, May. 18-20, Berlin: Springer-Verlag, 2011:85 - 101. 被引量:1
  • 4Ker AD, Pevny P. A new paradigm for steganalysis via clustering [ C ]//Proceedings of the Society of Photo-optical Instrumentation En- gineers, San Francisco, CA, USA, January 23 - 26, Bellingham: SPIE Press, 2011 :OUO1 -0U13. 被引量:1
  • 5Theodoridis S. Pattern recognition[ M]. 4th ed. Beijing: China Ma- chine Press, 2009. 被引量:1
  • 6Fridrich J, Pevny T, Kodovsky J. Statistically undetectable JPEG steg- anography: dead ends, challenges, and opportunities[ C]//Proceed- ings of the 9th ACM Workshop on Multimedia and Security, Dallas, Texas, USA, Sep. 20-21, New York: ACM Press, 2007:3 =14. 被引量:1
  • 7JP Hide&Seek [OL]. 2011. http://linuxO1, gwdg. de/ alatham/ stego, html. 被引量:1
  • 8Wesffeld A. F5-a steganographic algorithm: high capacity despite bet- ter steganalysis[ C ]//Proceedings of 4th International Workshop on In- formation Hiding, Pittsburgh, PA, USA, Apr. 25 - 27, Berlin: Springer-Verlag, 2002 : 289 - 302. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部