期刊文献+

超混沌Lorenz系统的电路实现与应用 被引量:7

Circuit implementation and application of hyperchaotic Lorenz system
下载PDF
导出
摘要 在经典三维Lorenz系统的基础上,增加一个非线性控制器,构造了一个新的四维超混沌Lorenz系统。通过数值计算,模拟分析了新系统的分岔图,Lyapunov指数随控制参数的变化,超混沌吸引子的相图,求出系统的Lyapunov指数及其吸引子分形维数。结果显示,通过改变新引入的非线性控制器的控制参数,可以使超混沌Lorenz系统分别呈现超混沌、混沌以及周期、拟周期等动力学行为。根据新Lorenz系统的状态方程,设计了与之相对应的实验电路,并在示波器中观察到电路系统的动力学行为,该结果与数值仿真结果基本吻合。将系统应用于图像加密,模拟实验结果表明,该系统能产生具有良好密码学特性的伪随机序列。 On the basis of the classical three-dimensional Lorenz system, this paper increases a nonlinear controller to construct a new four-dimensional hyperchaotic Lorenz system. The dynamics of the new system conduct are studied by bifurcation analysis, Lyapunov exponent spectrum and phase chart fractal dimension. Numerical simulations show that the hyperchaotic Lorenz system can render different dynamics behavior of hyperchaos, chaos, periodicity and quasi-periodicity. Furthermore, a corre- sponding experiment circuit is designed, the mechanics conduct of the electrical system through a oscillogram is observed, the result basically unanimous with the numerical simulation results. Finally, the new hyperchaotic system is applied to image encryption, and computer simulation experiments confirm that the new hyperchaotic system can produce good cryptographic properties of pseudo-random sequence.
出处 《计算机工程与应用》 CSCD 2013年第7期235-239,262,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.11161051 No.61073187)
关键词 LORENZ系统 超混沌 LYAPUNOV指数 混沌电路 图像加密 Lorenz system hyperchaos Lyapunov exponents chaotic electric circuit image encryption
  • 相关文献

参考文献12

  • 1刘崇新.一个超混沌系统及其分数阶电路仿真实验[J].物理学报,2007,56(12):6865-6873. 被引量:73
  • 2Periz G,Cerdeira H A.Extraeting messages masked by chaos[J]. Physical Review Letters, 1995,74 : 1970-1973. 被引量:1
  • 3Boutayeb M, Darouach M, Rafaralahy H.Generalized state-space observers for chaotic synchronization and secure communi- cation[J].IEEE Transactions on Circuits and Systems I:Fun- damental Theory and Applications, 2002,49( 3 ) : 345-349. 被引量:1
  • 4孙琳,姜德平.驱动函数切换调制实现超混沌数字保密通信[J].物理学报,2006,55(7):3283-3288. 被引量:21
  • 5Pang Shouquan, Liu Yongjian.A new hyperchaotic system from the Lfi system and its control[J].Journal of Computa- tional and Applied Mathematics, 2011,235 ( 8 ) : 2775-2789. 被引量:1
  • 6Kapitaniak T,Chua k O.Zhong G Q.Experimental hyperchaos in coupled Chua's circuits[J].lEEE Transactions on Circuits and Systems l: Fundamental Theory and Applications, 1994, 41(7) :499-503. 被引量:1
  • 7Nikolov S, Clodong S.Hyperchaos-chaos-hyperchaos transi- tion in modified R6ssler systems[J].Chaos,Solitons and Frac- tals,2006,28( 1 ) :252-263. 被引量:1
  • 8Grygiel K, Szlachetka P.Chaos and hyperchaos in coupled Kerr oscillators[J].Optics Communications, 2000, 177 (1/6) : 425-431. 被引量:1
  • 9Rosler O E.An equation for hyperchaos[J].Physics Letters A, 1979,71(2/3) : 155-157. 被引量:1
  • 10Matsumoto T,Chua L O,Kobayashi K.Hyperehaos: laborato- ryex periment and numerieal confirmation[J].IEEE Transactions on Circuits and Systems l : Fundamental Theory and Appli- cations, 1986,33:1143-1147. 被引量:1

二级参考文献28

共引文献104

同被引文献41

引证文献7

二级引证文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部