期刊文献+

基于数学形态学及支持向量机的心率失常识别 被引量:5

Arrhythmia classification based on mathematical morphology and support vector machine
下载PDF
导出
摘要 为实现对不同类型的心电图自动分析,研究并提出了一种顺序筛选极大值的R波定位算法,并采用支持向量机(SVM)进行最后的心律失常心拍识别。定位算法以数学形态学为基础,结合心电图自身特点,定义R波筛选区间,避免了传统算法中的阈值选择;定位R波峰后以R波峰为中心提取不同类型的心率失常的心拍,选择径向基(RBF)支持向量机进行识别分类。使用MIT-BIH心率失常数据库文件进行实验仿真,结果表明,算法对含不同类型心拍的心电图R波峰正确检测率较高(99.36%),学习后的SVM能有效识别早搏、房颤、束支传导阻滞、正常等不用类型心拍,总体识别率达到99.75%。 To achieve automatic analysis for different types of ElectroCardioGraph(ECG),a sequential screening method for maximum value was brought to detect R wave,while Support Vector Machine(SVM) was used to identify arrhythmia heart beats finally.The localization algorithm based on mathematical morphology combined with characteristics of ECG defined R-wave screening interval to avoid threshold selection in traditional algorithm.After R-peaks being positioned,various types of arrhythmia heart beats were extracted with R wave crest as its center and classified by selecting Radial Basis Function(RBF) or SVM.The results of the simulation experiment on the MIT-BIH database files indicate that this algorithm acquired high relevance ratio at 99.36% for ECG with different types of heart beats.After learning,the SVM can effectively identify as many as 4 types,such as atrial premature beat,premature ventricular beat,bundle branch block and normal heart beat,the overall recognition rate is 99.75%.
出处 《计算机应用》 CSCD 北大核心 2013年第4期1173-1175,共3页 journal of Computer Applications
关键词 心电图 数学形态学 R波检测 心律失常分类 支持向量机 ElectroCardioGram(ECG) mathematical morphology R wave detection arrhythmia classification Support Vector Machine(SVM)
  • 相关文献

参考文献15

二级参考文献69

共引文献111

同被引文献45

引证文献5

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部