期刊文献+

基于标签的个性化信息推荐理论模型研究 被引量:2

Research on Personalized Information Recommendation Model Based on the Label
原文传递
导出
摘要 标签标志着在web2.0时代用户从被动的消费者变为主动的信息创造者,用户可以自由的在网络上创建和使用代表自己意愿的任意标签。如何基于标签进行个性化的信息推荐是目前许多学者关注的一个问题,本文共总结了三类基于标签的个性化信息推荐模型:基于图论、基于矩阵和基于主题的模型,然后提出现有模型的缺陷及未来急需解决的问题。 The tag marks that the user becomes from passive consumers into active information creator in the era of web2.0, the user can freely create and use any tags which represent their will on the network. How to recommend personalized information based on tags for everyone is the focus that many scholars pay attention to, this paper has summarized three categories about the information recommendation model based on label: graph theory-based, matrix-based, and topic-based, and then puts forward the defects of the existing model and the problem solved in the future.
出处 《情报科学》 CSSCI 北大核心 2013年第4期24-27,共4页 Information Science
关键词 信息推荐 个性化 社会化标签 information recommendation personalized social tag
  • 相关文献

参考文献15

  • 1Zi-Ke Zhang,Tao Zhou,Yi-Cheng Zhang. Per- sonal-ized recommendation via integrated diffuse- ion on us- er-item-tag tripartite graphs[J].Physica A,2010,389 (1):179-186. 被引量:1
  • 2Manuela I,Martin-Vicente,Alberto Gil-Solla,etal. Se- mantic inference of user' s reputation and ex- pertise to improve collaborative recommend- dations[J].ex- pert systems with applications,2012,9(39):8248-8258. 被引量:1
  • 3Adomavicius G,Tuzhilin A.Toward the next genera- tion of recommender systems: A survey of the state-of-the-art and possible extensions[J], ieee transactions on knowledge and data eng- ineering, 2005, 17(6):734-749. 被引量:1
  • 4Balabanovic M.Content-Based,Collaborative, Recom- mendation[EB/OL].http://sentra.ischool.utexas.edu/ ~i385q/spring2005/readings/Balabanovic_Shoham- 1 997-Fab. pdf,2012-08-22. 被引量:1
  • 5Herlocker JL,Konstan JA,Terveen K,etal. Evalu- ating collaborative filtering recommender syste- ms [J].ACM trasactions on information systems, 2004,22 (1):5-53. 被引量:1
  • 6Zhou T,Ren J,Medo M,etal.Bipartite network projec- tion and personal recommendation[EB/OL].http://doc. rero.ch/lm.php? url= 1000,43,2,20071213113651 -JT/ zhang_bnp.pdf,2012-08-22. 被引量:1
  • 7Lambiotte R, Ausloos M.Collaborative tag- ging as a tripartite network [EB/OL].ht tp://arxiv.org/ pdf/ cs/ 051 2090.pdf,2012-08-22. 被引量:1
  • 8张子柯.社会化标签系统的结构、演化和功能[J].上海理工大学学报,2011,32(5):444-451. 被引量:19
  • 9Cattuto C,Schmitz C,Baldassarri A,etal.Network prop- erties of folksonomies[J].AI Communicati- ons, 2007, 20(4):245-262. 被引量:1
  • 10Ghoshal G,Zlatic' V,Caldarelli G,etal.Random hyper- graphs and their applications [EB/OL]. http://arxiv. org/abs/0903.0419,2012-08-22. 被引量:1

二级参考文献24

共引文献18

同被引文献22

引证文献2

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部