期刊文献+

一阶非线性时滞微分方程周期解的存在性

Existence of Periodic Solution for First Order Nonlinear Delay Differential Equations
下载PDF
导出
摘要 考虑具有周期系数的一阶非线性时滞微分方程M′(t)=((p(t))/((q(t)+M(t-mω))^(n+1))-β(t))M(t),t≥0得到了方程的正周期解珨M(t)存在的充分条件.利用Mathin连续性定理,得到了方程的正周期解珨M(t)存在的充分条件. Consider the first order delay differential equation with periodic coefficients M'(t)=(p(t)/(q(t)+M(t-mw)^n+1-β(t)M(t),t≥0 where,p(t) ,β(t) and q(t) are positive w-periodic functions, w is a positive real number,m and n are nonnegative integers. Using the Mawhin continuity theorem, suffcient conditions are obtained for existence of periodic solution of the equation.
作者 杜秋霞
出处 《太原师范学院学报(自然科学版)》 2012年第4期25-27,47,共4页 Journal of Taiyuan Normal University:Natural Science Edition
关键词 一阶时滞微分方程 非线性 周期解 临界点 first order delay differential equation nonlinear periodic solution critical point
  • 相关文献

参考文献7

  • 1Freedman H I,Wu J. Periodic solutions of single-species models with periodic delay[J]. SIAM J. Math. Anal. , 1992,23:689- 701. 被引量:1
  • 2Kuang Y. Global attractivity and periodic solutions in delay-differential equations related to models in physiology and popula- tion biology[J]. Jpn J. Ind. Appl. Math. , 1992,9:205-238. 被引量:1
  • 3Saker S H, Agarwal S. OseiUation and global attraetivity of a periodic survival red blood cells model[J]. Dym Contin. Distr. Impul. Syst. Ser. A:Math. Anal. ,2005(12):429-440. 被引量:1
  • 4May R,Anderson R M. Infctious diseases of humans:dynamics and control[M]. London:Oxford Science Publications, 1995. 被引量:1
  • 5Elabbasy E M,Saif K,Saker S H. Oscillation in host maerpoparasite model with delay time[J]. Far I:ast J. Appl. Math,2000 (4) :119-142. 被引量:1
  • 6Agarwal J L,Dona] O'Regan,Saker S H. Oscillation and global attractivity in a delay periodic host maeroparasite model[J], Applied Mathematics and Computation, 2008,196 : 340-352. 被引量:1
  • 7Gaines R E, Mawhin J L. Coincidence degree and nonlinear differential equations[M]. Berlin:Springer, 1977. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部