摘要
考虑具有周期系数的一阶非线性时滞微分方程M′(t)=((p(t))/((q(t)+M(t-mω))^(n+1))-β(t))M(t),t≥0得到了方程的正周期解珨M(t)存在的充分条件.利用Mathin连续性定理,得到了方程的正周期解珨M(t)存在的充分条件.
Consider the first order delay differential equation with periodic coefficients M'(t)=(p(t)/(q(t)+M(t-mw)^n+1-β(t)M(t),t≥0 where,p(t) ,β(t) and q(t) are positive w-periodic functions, w is a positive real number,m and n are nonnegative integers. Using the Mawhin continuity theorem, suffcient conditions are obtained for existence of periodic solution of the equation.
出处
《太原师范学院学报(自然科学版)》
2012年第4期25-27,47,共4页
Journal of Taiyuan Normal University:Natural Science Edition
关键词
一阶时滞微分方程
非线性
周期解
临界点
first order delay differential equation
nonlinear
periodic solution
critical point