期刊文献+

一族求解非线性方程的高阶迭代方法 被引量:1

A family of iterative methods with higher order convergence for nonlinear equations
下载PDF
导出
摘要 给出了一族解非线性方程的具有高阶收敛速度的迭代方法.该方法不仅包含了文献中的十六阶迭代方法,而且还给出了新的十六阶迭代方法.最后,通过数值算例验证了方法的有效性和可行性. In this paper,a new family of iterative methods for solving nonlinear equations with high order convergence was discussed.This method not only contained the sixteen-order iteration of the literature,but also gave the new sixteen-order iterative method.Finally,the numerical experiments verified the feasibility and effectiveness of the method.
出处 《哈尔滨商业大学学报(自然科学版)》 CAS 2012年第6期751-753,768,共4页 Journal of Harbin University of Commerce:Natural Sciences Edition
关键词 非线性方程 迭代方法 牛顿方法 收敛阶 nonlinear equations iterative methods Newton's method convergence
  • 相关文献

参考文献9

  • 1TRAUB J F. Iterative Methods for the Solution of Equations [ M ]. New Jersey : Prentice - Hall, 1964. 被引量:1
  • 2LI X W, MU C L, MA J W. Sixteenth - order method for nonlin- ear equa ti0ns [J]. Appl. Math. Comput. , 2010, 215:3754 - 3758. 被引量:1
  • 3ZHENG Q, LI J Y, HUANG F X. An optimal Steffensen - type family for solving nonlinear equations [ J ]. Appl. Math. Corn- put. , 2011, 217:9592-9597. 被引量:1
  • 4BI W H, REN H M, WU Q B. Three - step iterative methods with eighth - order convergence for solving nonlinear equations [J]. J. Comput. Appl. Math. , 2009, 225:105 112. 被引量:1
  • 5KUNG H T , TRAUB J F. Optimal order of one - point and mul- tipoint iteration [J]. J. Assoc. Comput. Math., 1974, 21: 634 - 651. 被引量:1
  • 6LIU L P, WANG X. Eighth - order methods with high efficiency index for solving nonlinear equations [ J ]. Appl. Math. Com- put. , 2010, 215:3449-3454. 被引量:1
  • 7KOU J S, LI Y T, WANG X H. Some variants of Ostmwskis method with seventh - order convergence [ J ]. J. Comput. Ap- pl. Math. 2007, 209:153-159. 被引量:1
  • 8THUKRAL R. A new eighth - order iterative method for solving nonlinear equations [J]. Appl. Math. Comput., 2010, 217: 222 - 229. 被引量:1
  • 9ALICIA C, TORREGROSA J R, VASSILEVA M P. Three - step iterative methods with optimal eighth - order convergence [J]. Appl. Math. Comput. , 2011, 235:3189-3194. 被引量:1

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部