摘要
Laser-MIG hybrid welding process was dealt with 6 mm thick 5083Hl16 Al-Mg alloy plate in butt-joint configuration. Weld formation principle during hybrid welding was explained. The joint properties and microstructure characteristics of welded joints were analyzed by tensile tests, fractographs observed by optical microscopy and scanning electron microscopy (SEM). Higher heat input could obtain better mechanical properties, and tensile strength and elongation reached 97.2%, 81% of the base metal, respectively. Fracture position traasited from fusion line to weld center in the higher heat input, and fracture location were only in the center of welded joints for the heat input relatively small.
Laser-MIG hybrid welding process was dealt with 6 mm thick 5083Hl16 Al-Mg alloy plate in butt-joint configuration. Weld formation principle during hybrid welding was explained. The joint properties and microstructure characteristics of welded joints were analyzed by tensile tests, fractographs observed by optical microscopy and scanning electron microscopy (SEM). Higher heat input could obtain better mechanical properties, and tensile strength and elongation reached 97.2%, 81% of the base metal, respectively. Fracture position traasited from fusion line to weld center in the higher heat input, and fracture location were only in the center of welded joints for the heat input relatively small.