摘要
Numerical models based on the boundary element method and Boussinesq equation are used to simulate the wave transform over a submerged bar for regular waves.In the boundary-element-method model the linear element is used,and the integrals are computed by analytical formulas.The Boussinesq-equation model is the well-known FUNWAVE from the University of Delaware.We compare the numerical free surface displacements with the laboratory data on both gentle slope and steep slope,and find that both the models simulate the wave transform well.We further compute the agreement indexes between the numerical result and laboratory data,and the results support that the boundary-element-method model has a stable good performance,which is due to the fact that its governing equation has no restriction on nonlinearity and dispersion as compared with Boussinesq equation.
Numerical models based on the boundary element method and Boussinesq equation are used to simulate the wave transform over a submerged bar for regular waves.In the boundary-element-method model the linear element is used,and the integrals are computed by analytical formulas.The Boussinesq-equation model is the well-known FUNWAVE from the University of Delaware.We compare the numerical free surface displacements with the laboratory data on both gentle slope and steep slope,and find that both the models simulate the wave transform well.We further compute the agreement indexes between the numerical result and laboratory data,and the results support that the boundary-element-method model has a stable good performance,which is due to the fact that its governing equation has no restriction on nonlinearity and dispersion as compared with Boussinesq equation.
基金
Project supported by the National Natural Science Foundation of China (Grant Nos. 41106019 and 41176016)
the Knowledge Innovation Programs of the Chinese Academy of Sciences (Grant No. kzcx2-yw-201)
the Public Science and Technology Research Funds Projects of Ocean (Grant No. 201105018)
the Natural Science Foundation of Jiangsu Province,China (Grant No. BK2012315)