期刊文献+

弱Hopf群余代数Kegel定理(英文) 被引量:3

KEGEL’S THEOREM OVER WEAK HOPF GROUP COALGEBRAS
下载PDF
导出
摘要 本文研究了余三角弱Hopfπ-余代数H的左弱π-H-余模代数.通过构造左弱π-H-余模代数的导出π-σ-李代数,得到了弱Hopfπ-余代数Kegel定理,推广了文献[4]的结果. In this article, we consider the left weak π-H-comodule algebra for a cotriangular weak Hopf π-coalgebra H. By constructing the derived π-σ-Lie algebra for a left weak π-H- comodule algebra, we obtain the Kegel’s theorem over weak Hopf π-coalgebras, which generalizes the results in paper [4].
作者 周璇 杨涛
出处 《数学杂志》 CSCD 北大核心 2013年第2期228-236,共9页 Journal of Mathematics
基金 Supported by Natural Science Foundation for Colleges and Universities in Jiangsu Province(12KJD110003) National Natural Science Foundation of China(11226070)
关键词 弱Hopfπ-余代数 左弱π-H-余模代数 π-σ-李代数 Kegel定理 weak Hopf π-coalgebras left weak π-H-comudule algebras π-σ-Lie algebras Kegel’s theorem
  • 相关文献

参考文献2

二级参考文献25

  • 1Turaev, V. G.: Homotopy field theory in dimension 3 and crossed group-categories. Preprint GT/0005291, 2000. 被引量:1
  • 2Van Daele, A., Wang, S. H.: New braided crossed categories and Drinfel'd quantum double for weak Hopf π-coalgebra. Comm. Algebra, 36, 2341-2386 (2008). 被引量:1
  • 3Caenepeel, S., De Groot, E.: Galois theory for weak Hopf algebras. Rev. Roumaine Math. Pures Appl., 52, 189-206 (2007). 被引量:1
  • 4Wang, S. H.: Morita contexts, ~r-Galois extensions for Hopf π-coalgebras. Comm. Algebra, 34, 521-546 (2006). 被引量:1
  • 5Virelizier, A.: Hopf group-coalgebras. J. Pure Appl. Algebra, 171, 75 122 (2002). 被引量:1
  • 6Sweedler, M.: Hopf Algebras, Benjamin, New York, 1969. 被引量:1
  • 7Ceuenepeel, S., Janssen, K., Wang, S. H.: Group corings. Applied Categorial Structure, 16(1-2), 65-96 (2008). 被引量:1
  • 8Wisbauer, R.: Weak corings. J. Algebra, 245, 123-160 (2001). 被引量:1
  • 9Brzezifiski, T., Wisbauer, R.: Corings and Comodules. In: London Math. Soc. Lecture Note Ser, Cambridge Univ. Press, Cambridge, Vol. 309, 2003. 被引量:1
  • 10Guo, Q. L., Wang, S. H.: Lax group corings. Inter. Electr. J. Algebra, 4, 83-103 (2008). 被引量:1

共引文献1

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部