期刊文献+

Possibilistic Exponential Fuzzy Clustering 被引量:1

Possibilistic Exponential Fuzzy Clustering
原文传递
导出
摘要 Generally, abnormal points (noise and outliers) cause cluster analysis to produce low accuracy especially in fuzzy clustering. These data not only stay in clusters but also deviate the centroids from their true positions. Traditional fuzzy clustering like Fuzzy C-Means (FCM) always assigns data to all clusters which is not reasonable in some circumstances. By reformulating objective function in exponential equation, the algorithm aggressively selects data into the clusters. However noisy data and outliers cannot be properly handled by clustering process therefore they are forced to be included in a cluster because of a general probabilistic constraint that the sum of the membership degrees across all clusters is one. In order to improve this weakness, possibilistic approach relaxes this condition to improve membership assignment. Nevertheless, possibilistic clustering algorithms generally suffer from coincident clusters because their membership equations ignore the distance to other clusters. Although there are some possibilistic clustering approaches that do not generate coincideut clusters, most of them require the right combination of multiple parameters for the algorithms to work. In this paper, we theoretically study Possibilistic Exponential Fuzzy Clustering (PXFCM) that integrates possibilistic approach with exponential fuzzy clustering. PXFCM has only one parameter and not only partitions the data but also filters noisy data or detects them as outliers. The comprehensive experiments show that PXFCM produces high accuracy in both clustering results and outlier detection without generating coincident problems. Generally, abnormal points (noise and outliers) cause cluster analysis to produce low accuracy especially in fuzzy clustering. These data not only stay in clusters but also deviate the centroids from their true positions. Traditional fuzzy clustering like Fuzzy C-Means (FCM) always assigns data to all clusters which is not reasonable in some circumstances. By reformulating objective function in exponential equation, the algorithm aggressively selects data into the clusters. However noisy data and outliers cannot be properly handled by clustering process therefore they are forced to be included in a cluster because of a general probabilistic constraint that the sum of the membership degrees across all clusters is one. In order to improve this weakness, possibilistic approach relaxes this condition to improve membership assignment. Nevertheless, possibilistic clustering algorithms generally suffer from coincident clusters because their membership equations ignore the distance to other clusters. Although there are some possibilistic clustering approaches that do not generate coincideut clusters, most of them require the right combination of multiple parameters for the algorithms to work. In this paper, we theoretically study Possibilistic Exponential Fuzzy Clustering (PXFCM) that integrates possibilistic approach with exponential fuzzy clustering. PXFCM has only one parameter and not only partitions the data but also filters noisy data or detects them as outliers. The comprehensive experiments show that PXFCM produces high accuracy in both clustering results and outlier detection without generating coincident problems.
出处 《Journal of Computer Science & Technology》 SCIE EI CSCD 2013年第2期311-321,共11页 计算机科学技术学报(英文版)
关键词 CLUSTERING outlier detection noise clustering, outlier detection, noise
  • 相关文献

参考文献1

二级参考文献2

共引文献4

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部