期刊文献+

基于改进支持向量机的抽汽管道阻力特性混合建模 被引量:1

The mixed model of the flow resistance in pipeline based on improved SVM
下载PDF
导出
摘要 结合机理分析与统计智能算法,建立的热力系统子系统混合模型,可以充分发挥两种方法各自的优势。经现场实际数据分析,基于遗传算法改进ε-SVM的抽汽管道压损模型,符合理论分析规律,并且具有较高的精度。 The mechanism analysis and statistics intelligent algorithm was combined in this paper to establish mixed model of the thermal subsystems, which was a useful way to express the respective advantages of the two methods. Through the analysis of actual data, the pressure loss model of the steam extraction in pipeline based on support vector machine (SVM) improved by genetic algorithm, coincidences theoretical analysis rule, and has high accuracy to meet the need of the state reconstruction for the purpose of the energy consumption analysis.
出处 《华北电力大学学报(自然科学版)》 CAS 北大核心 2013年第1期71-75,共5页 Journal of North China Electric Power University:Natural Science Edition
关键词 热力系统 重构 支持向量机 遗传算法 混合模型 thermal system reconstructio SVM genetic algorithm mixed model
  • 相关文献

参考文献10

二级参考文献78

  • 1陈丽丽,李蔚,盛德仁,陈坚红,任浩仁.火电厂实时监控系统测量数据预测的研究进展[J].电站系统工程,2005,21(2):1-4. 被引量:13
  • 2张春发,丁常富,周健,李永华,范寒松.再热机组热经济分析的线性化方程[J].中国电力,1994,27(8):49-51. 被引量:11
  • 3边肇祺.模式识别[M].北京:清华大学出版社,1998.. 被引量:18
  • 4方崇智 萧德云.过程辨识[M].北京:清华大学出版社,1998.. 被引量:29
  • 5.GB7252-87.变压器油中溶解气体分析和判断导则[S].,.. 被引量:1
  • 6DAI V, YANG J, RODRIGUEZ N, et al. DRC Plus: augmenting standard DRC with pattern matching on 2D geometries [C]//Design for Manufaeturability Through Design-Process Integration. San Jose, CA: SHE, 2007: 65210A. 被引量:1
  • 7NAGASE N, SUZUKI K, TAKAHASHI K, et al. Study of hotspot detection using neural network judgement [C]//Photomask and Next-Generation Lithography Mask Technology XIV. Yokohama, Japan: SPIE, 2007:66071B. 被引量:1
  • 8WUU J Y, PIKUS F G, TORRES A, et al. Detecting context sensitive hotspots in standard cell libraries [C]//Design for Manufacturability Through Design- Process Integration III. San Jose, CA: SPIE, 2009: 727515. 被引量:1
  • 9DING D, WU X, GHOSH J, et al. Machine learning based lithographic hotspot detection with critical-feature extraction and classification [ C]//International Conference on IC Design and Technology, Austin, TX: IEEE. 2009. 被引量:1
  • 10BYUN H, LEE S W. Applications of Support Vector Machines for Pattern Recognition: A Survey. Pattern Recognition with Support Vector Machines[M]. Berlin: Springer, 2002 : 571 - 591. 被引量:1

共引文献296

同被引文献26

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部