期刊文献+

决策主导的多模式融合目标跟踪算法 被引量:7

Decision-leading and multi-pattern fusion based target tracking algorithm
下载PDF
导出
摘要 为了解决复杂场景中运动目标跟踪,特别是遮挡情况下对目标的连续、稳定跟踪的问题,提出一种基于决策主导的多模式融合跟踪算法。采用多层算法结构,以图像特征作为决策判据,自主控制算法流程;首先利用重心和改进的粒子滤波算法预测目标位置进行粗定位,而后用改进的SIFT特征匹配对目标精确定位。在保证跟踪性能的同时大大简化了算法的复杂度,提高了算法的实时性。实验表明,多模融合跟踪能够在目标发生旋转、缩放和有物体遮挡干扰的情况下,准确地提取目标,并保持连续稳定的跟踪,完全可以满足工程应用中实时性和鲁棒性的要求。 In order to solve the problem of moving target tracking in complex background, especially the continuous and robust target tracking under occlusion condition, a target tracking algorithm based on decision-leading and multipattern fusion is proposed. The muhilayer algorithm structure is adopted, and image feature is taken as the decision- making criteria, so the algorithm procedure can be self-controlled. Firstly, centroid and improved particle filter algorithm are used to predict the target position and coarsely locate the .target; then, the improved SIFT feature matching pair is adopted to precisely locate the target. Besides ensuring the tracking performance, the proposed method greatly simplifies the algorithm complexity, and improves its real-time performance. Experiment results indicate that with multi-pattern fusion, the proposed algorithm can accurately extract, and continuously and robustly track the target in the conditions of target rotation, scaling and occlusion. The proposed algorithm can fulfill the requirements of real-time and robustness in engineering applications.
作者 郝志成
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2013年第3期487-493,共7页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(61172111)资助项目
关键词 图像处理 目标跟踪 决策主导 多模融合 粒子滤波 SIFT特征匹配 image processing target tracking decision-leading multi-pattern fusion particle filtering SIFT feature matching
  • 相关文献

参考文献15

  • 1FRANCO 0,SIMONA C, MICHELA Z, et al. Robusttracking of humans an(J vehicles in cluttered scenes withocclusions[ C]. IEEE Int Conf on Image Processing, NewYork ,2002( 3) :629-632. 被引量:1
  • 2ZHOU Y, TAO H. A background layer model for objecttracking through occlusion[ C ]. Proceedings of the NinthIEEB: International Conference on (Computer Vision(ICCV^) ,2003(2) :1079-1085. 被引量:1
  • 3RISTIVOJKVI M, KONRAD J. Space-time image sequenceanalysis: object tunnels and (X'clusion volumes [ J ]. I KEF]Trans, on Circuits And Systems for Video Technology ,2006:364-376. 被引量:1
  • 4N I,SIIIGKVUKI S. Robust vievv-l?ase(J visual trackingwith (leleclion of (x*cIusions [ C ]. IKKK Int on Roboticsand Automation, Seoul ,2001 ( 2) : 1207-1213. 被引量:1
  • 5SHUNSUKE K,YASUYUKI M,KATSUS1I1 I,et al. Oc-clusion robust tracking utilizing spatiotemporal Markovrandom fielcl model [ C ]. Proc 15th Int Conf on PatternRecognition, Barcelona, 2000 ( 1 ) : 140-144. 被引量:1
  • 6罗寰,王芳,陈中起,于雷.基于对称差分和光流估计的红外弱小目标检测[J].光学学报,2010,30(6):1715-1720. 被引量:38
  • 7虞旦,韦巍,张远辉.基于单目视觉的移动机器人跟随[J].仪器仪表学报,2010,31(3):659-664. 被引量:15
  • 8张泽旭,李金宗,李冬冬.一种运动目标多特征点的鲁棒跟踪方法研究[J].数据采集与处理,2003,18(4):423-428. 被引量:6
  • 9GORDON N J, SALMOND D, SMITH A,F,M. Novel ap-proach to nonlinear and non-Gaussian Bayesian state estima-tion[J]. IEEE Proceedings-F, 1993,140(2) :107-113. 被引量:1
  • 10ISARD M, BLAKE A. Condensation-conditional densitypropagation for visual tracking [ J]. International Journalof Computer Vision, 1998 ,29( 1 ) :5-28. 被引量:1

二级参考文献92

共引文献215

同被引文献98

  • 1徐琨,贺昱曜,王卫亚.基于CamShift的自适应颜色空间目标跟踪算法[J].计算机应用,2009,29(3):757-760. 被引量:22
  • 2彭宁嵩,杨杰,刘志,张风超.Mean-Shift跟踪算法中核函数窗宽的自动选取[J].软件学报,2005,16(9):1542-1550. 被引量:165
  • 3宋新,沈振康,王平,王鲁平.Mean shift在目标跟踪中的应用[J].系统工程与电子技术,2007,29(9):1405-1409. 被引量:30
  • 4OZUYSAL M,CALONDER M,LEPETIT V, et al. Fastkeypoint recognition using random ferns [J]. Pattern A-nalysis and Machine Intelligence, IEEE Transactions on,2010,32(3) : 448-461. 被引量:1
  • 5LEPETIT V, LAGGER P, FUA P. Randomized trees forreal-time keypoint recognition [C]. Computer Vision andPattern Recognition, CVPR 2005. IEEE Computer Socie-ty Conference on. IEEE, 2005 , 2 : 775-781. 被引量:1
  • 6KALAL Z, MATAS J, MIKOLAJCZYK K. Onlinelearning of robust object detectors during unstabletracking [C] . Computer Vision Workshops ( ICCVWorkshops) ,2009 IEEE 12th International Conferenceon. IEEE, 2009: 1417-1424. 被引量:1
  • 7KALAL Z, MATAS J, MIKOLAJCZYK K. Pn learn-ing: Bootstrapping binary classifiers by structural con-straints [C] . Computer Vision and Pattern Recognition(CVPH),2010 IEEE Conference on. IEEE, 2010:49-56. 被引量:1
  • 8KALAL Z,MIKOLAJCZYK K,MATAS J. Forward-backward error : Automatic detection of tracking fail-ures [C]. Pattern Recognition ( ICPR),2010 20th In-ternational Conference on. IEEE, 2010 : 2756-2759. 被引量:1
  • 9KALAL Z, MIKOLAJCZYK K, MATAS J. Tracking-learning-detection [J]. Pattern Analysis and Machine In-telligence ,IEEE Transactions on,2012,34 ( 7 ):1409-1422. 被引量:1
  • 10WINKLER T, RINNE B. User-centric privacy aware- ness in video surveillance [ J ]. Multimedia systems, 2012, 18(2) : 99-121. 被引量:1

引证文献7

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部