期刊文献+

中国用电量需求模型的建立及需求预测 被引量:3

Establishment and Forecasting of Chinese Electricity Consumption Demand
下载PDF
导出
摘要 讨论了我国用电量及其影响因素问题。取国内生产总值(GDP)、人口总数和原煤产量3个变量作为解释变量,分析它们对用电总量的影响程度。得出以下结论:(1)通过F检验,得出这3个自变量与用电量有显著线性关系,通过t检验,得出人口总数对用电量没有显著性影响,并通过回归诊断,得出线性回归方程,(2)预测了国家2012~2016年的用电量分别为26533.66亿千瓦时,28914.31亿千瓦时,31083.88亿千瓦时,33157.45亿千瓦时,35054.74亿千瓦时,这些研究结果为我国电力建设和社会发展规划提供了定量科学依据。 This article discusses the issues of power consumption and its influence factors,taking the gross domestic production(GDP),the total population and the raw coal output as an explanatory variable,analyzing the impact of the three variables on the total electricity consumption.Conclusions are as follows: (1) these three independent variables have a significant linear relationship with electricity consumption by F test,the total population does not significantly influence electricity consumption by the T test,a linear regression equation by is drawn regression diagnostics: y =-1.681 × 103 + 7.136 × 10-2x1 + 6.118 × 102x3; (2) it predicts the annual electricity consumptions of electricity consumption in 2012-2016 are: 26533.66,28914.31,31083.88,33157.45,35054.74 kilowatt hours.These findings provide a quantitative scientific basis for the construction of China′s power and social development planning.
作者 徐丽娜
出处 《山西大同大学学报(自然科学版)》 2013年第1期18-21,共4页 Journal of Shanxi Datong University(Natural Science Edition)
关键词 用电量 F检验 T检验 线形回归 预测 electricity consumption F test T test linear regression forecast
  • 相关文献

参考文献6

  • 1张日权,卢一强著..变系数模型[M].北京:科学出版社,2004:141.
  • 2Engle R F, Granger C W, Rice J, et al. Semilparametrie of the relation between weather and electricityscales[J]. Amer.Statist Assoc, 1980, 81(394): 310- 320. 被引量:1
  • 3Hastie T J, Tibshirani R. Varying-cofficient Models [J]. J R Statist Ass. B, 1993(55): 757 - 796. 被引量:1
  • 4张日权.强相依数据的函数系数部分线性模型的估计[J].应用数学学报,2006,29(2):374-381. 被引量:3
  • 5Schllmaker L L. Spline Functions [M]. New york: Wiley, 1981. 被引量:1
  • 6关治, 陆金甫..数值分析基础[M],1998.

二级参考文献9

  • 1Chen R, Tsay S. Function-coefficient Autoregressive Models. J.A.S.A., 1993, 88:298-308. 被引量:1
  • 2Cai Z, Fan J, Yao Q. Function-coefficient Regression Models for Nonlinear Time Series. J.A.S.A., 2000, 95:941-956. 被引量:1
  • 3Fan J, Zhang W. Statistical Estimation in Varying-coefficient Model. The Annals of Statistics, 1999,27:1491-1518. 被引量:1
  • 4Xia Y, LI W K. On Single-index Coefficient Regression Models. J.A.S.A., 1999, 94:1275-1285. 被引量:1
  • 5Xia Y, LI W K. On the Estimation and Testing of Functional-coefficient Linear Models. Statistica Sinica, 1999, 9: 735-757. 被引量:1
  • 6Fan J, Gijbels I. Local Polynomial Modelling and Its Applications. London: Chapman and Hall,1996. 被引量:1
  • 7Young Y K, Stone C J, Semiparametric Time Series Regression, Journal of Time Series Analysis,1994, 15:405-428. 被引量:1
  • 8Masry E. Multivariate Local Polynomial Regression for Time Series: Uniform Strong Consistency and Pontes. J. Time Series Annalysis, 1996, 17:571-599. 被引量:1
  • 9Hidalgo F J. Adaptive Semiparametric Estimation in the Presence of Autocorrelation of Unknown From. Journal of Time Series Analysis, 1992, 13:47-48. 被引量:1

共引文献2

同被引文献15

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部