期刊文献+

多极化SAR图像融合法在沿海滩涂调查中的应用 被引量:2

Application of fusion of multi-polarization SAR images in investigation of coastal tidal flats
下载PDF
导出
摘要 利用遥感信息技术准确掌握沿海滩涂湿地的现状,对于江苏沿海大开发这一国家战略的顺利实施具有重要意义。由于多极化合成孔径雷达图像(SAR)具有不同的极化信息,将极化SAR图像进行融合可以更有效地获取沿海滩涂湿地信息。针对多极化SAR图像的融合问题,提出了一种基于非亚采样Contourlet变换(NSCT)和脉冲耦合神经网络(PCNN)的图像融合方法,该方法采用简化的PCNN模型分别对图像的低频子带和高频子带系数进行智能决策。以江苏盐城地区的ALOS PALSAR双极化图像为例,对所提方法的有效性进行验证,从主观定性和客观定量两方面综合比较了新方法与几种传统的基于多尺度分解方法的融合效果。结果表明,新方法能够最大程度地保留原始极化SAR图像的信息,融合效果好于其他方法,更有利于沿海滩涂湿地信息的提取。 Grasping the present situation of coastal tidal flats by remote sensing information technology is important for Jiangsu coastal development policy. It is more effective to obtain the tidal flat information by fusing multi - polarization Synthetic Aperture Radar(SAR) images which provide different polarization information of the targets. In consideration with the problems of the fu- sion of multi - polarizaiton SAR, a new fusion algorithm based on Nonsubsampled Contourlet Transform (NSCT) and PCNN is proposed to fuse the multi - polarization SAR images. The simplified PCNN model is used to make intelligent decisions for the co- efficients of low and high frequency in sub - band respectively. Finally, the method is examined by using ALOS dual - polariza- tion SAR images of tidal flats in Yancheng City of Jiangsu Province and compared with some regular fusion algorithms based on multi -scale decomposition. The results indicate that the proposed method can reserve the original polarization information at the largest degree and its fusion effects are better, which can be more helpful for extracting the information of the coastal tidal flats in Jiangsu Province.
作者 杨智翔
出处 《人民长江》 北大核心 2013年第5期52-56,60,共6页 Yangtze River
基金 国家自然科学基金项目(41274017) 江苏省科技支撑计划(BE2010316) 日本宇航局AlOS数据研究项目(PI534)
关键词 非亚采样Contourlet变换 脉冲耦合神经网络 多极化SAR图像 图像融合 沿海滩涂 Nonsubsampled Contourlet Transform (NSCT) pulse - coupled neural network (PCNN) , multi - polarizationSAR image fusion coastal tidal flats
  • 相关文献

参考文献13

  • 1Arief W, Prashanth R, Marpu R G. Discrimination of peatlands in trop- ical swamp forests using dual - polarimetric SAR and Landsat ETM data[ J]. International Journal of Image and Data Fusion ,2010,1 ( 3 ) : 217 - 242. 被引量:1
  • 2张德祥,吴小培,高清维,郭晓静.基于平稳Contourlet变换的极化SAR图像融合[J].电子科技大学学报,2010,39(2):200-203. 被引量:6
  • 3李伟..像素级图像融合方法及应用研究[D].华南理工大学,2006:
  • 4Do M N,Vetterli M. The Contourlet transform: an efficient directional muhiresolution image representation[ J]. IEEE Transactions on Image Processing, 2005,14 ( 12 ) : 2091 - 2106. 被引量:1
  • 5李光鑫,王珂.基于Contourlet变换的彩色图像融合算法[J].电子学报,2007,35(1):112-117. 被引量:51
  • 6Cunha A L,Zhou J P, Do M N. The nonsubsampled contourlet trans- form: theory,design, and applications[ J]. IEEE Transaction on Image Processing, 2006,15 ( 10 ) : 3089 - 3101. 被引量:1
  • 7Echhorn R, Reitboeck H, Arndt M, et al. Feature linking via synchro- nization among distributed assemblies: simulations of results from cat visual cortex [ J ]. Neural Computation, 1990,2 ( 3 ) : 293 - 307. 被引量:1
  • 8陈浩..基于多尺度变换的多源图像融合技术研究[D].中国科学院研究生院(长春光学精密机械与物理研究所),2010:
  • 9Broussard R P, Rogers S K, Oxley M E, et al. Physiologically motivated image fusion for object detection using a pulse couple neural network [J]. IEEE Transactions on Neural Networks, 1999,10 ( 3 ) : 554 - 563. 被引量:1
  • 10Kuntimad G,Ranganath H S. Perfect image segmentation using pulse coupled neural networks [ J ]. IEEE Transactions on Neural Net- works,1999,10(3) :591 - 598. 被引量:1

二级参考文献20

  • 1李光鑫,王珂,张立保.加权多分辨率图像融合的快速算法[J].中国图象图形学报,2005,10(12):1529-1536. 被引量:13
  • 2G Pajares,J M Cruz.A wavelet-based image fusion tutorial[J].Pattern Recognition,2004,37(9):1855-1872. 被引量:1
  • 3Z Zhang,R S Blum.A categorization and study of multiscale-decomposition-based image fusion schemes with a performance study for a digital camera application[J].Proceedings of the IEEE,1999,87(8):1315-1326. 被引量:1
  • 4G Piella.A general framework for multiresolution image fusion:from pixels to regions[J].Information Fusion,2003,4(4):259-280. 被引量:1
  • 5M N Do,M Vetterli.Contourlets[A].G V Welland.Beyond Wavelets[C].New York:Academic Press,2003. 被引量:1
  • 6M N Do,M Vetterli.The contourlet transform:an efficient directional multiresolution image representation[J].IEEE Transactions on Image Processing,2005,14(12):2091-2106. 被引量:1
  • 7E J Candès.Ridgelets:Theory and Applications[D].USA:Department of Statistics,Stanford University,1998. 被引量:1
  • 8E J Candès,D L Donoho.Curvelets-A surprisingly effective nonadaptive representation for objects with edges[A].L L Schumaker,et al.Curves and Surfaces[C].Nashville:Vanderbilt University Press,1999. 被引量:1
  • 9S G Mallat.A Wavelet Tour of Signal Processing[M].San Diego,California:Academic Press,1998. 被引量:1
  • 10D A Scribner,J M Schuler,P R Warren,et al.Infrared color vision:separating objects from backgrounds[J].Proceedings of SPIE,1998,3379:2-9. 被引量:1

共引文献54

同被引文献24

  • 1狄红卫,陈木生.一种自适应的多光谱图像与全光图像融合新方法[J].光子学报,2005,34(3):452-454. 被引量:9
  • 2Prats-Iraola P, Scheiber R, Rodriguez-Cssola h4, et al.. High precision SAR focusing of TcrraSAR-X experimental staring spotlight data[C]. 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 2012:3576 3579. 被引量:1
  • 3Mittermayer J, Wollstadt S, Prats-Iraola P, et al.. Staring spotlight imaging with TerraSAR-X[C]. 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 2012: 1606-1609. 被引量:1
  • 4Mittcrmaycr J, Wollstadt S, Prats-Iraola P, et al.. The TerraSAR-X staring spotlight mode concept[J]. IEEE Transactions on Geoscicnce and Remote Sensing, 2014, 52(6) 3695-3706. 被引量:1
  • 5Kim J-h, Heer C, and Schaefer C. Astrium technology developnmnt for next generation SAR[C]. 2013 IEEE International Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Tsukuba, Japan, 2013:24 26. 被引量:1
  • 6Gantert S, Kern A, Dtiring R, et al.. The future of X-band SAR: TerraSAR-X next generation and WorldSAR constellation[C]. 2013 IEEE International Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Tsukuba, Japan, 2013: 20-23. 被引量:1
  • 7Gantert S, Kern A, Dtlring R, et al.. TERRASAR-X next generation program overview[C]. 2014 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Quebec, Canada, 2014: 1-4. 被引量:1
  • 8Gumming G and Wong H. Synthetic Aperture Radr Imaging Algorithm and Implementation[M]. Beijing: Electronic Industries Press, 2007: 155-191. 被引量:1
  • 9Lanari R and Hensley S. Chirp z-transform ba.sed SPECAN approach for phase-preserving SeanSAR image generation[J].IEE Proceeding,-Radar, Sonar and Navigation, 1998, 145(5): 254-261. 被引量:1
  • 10Raney R K, Runge H, Bamler R, et al.. Precision SAR processing using chirp scaling[.]]. IEEE Transactions on Geoscicnce and Remote Sensing, 1994, 32(4): 786-799. 被引量:1

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部