期刊文献+

一个结构网格并行CFD程序的单机性能优化 被引量:3

Uniprocessor Performance Tuning of a Structured Grid Based Parallel CFD Application
下载PDF
导出
摘要 从单机性能优化角度对一个高阶精度结构网格CFD并行程序进行了优化。通过识别关键变量并对其进行常量参数化优化,使编译器能够实现更高级别的针对性优化;根据程序数据结构特点及访问模式,设计了分级数据缓存技术,使程序主要计算代码能够以更优的方式访问主要数据结构,提高了访存空间局部性;进行了各种循环变换,以优化访存性能。在国家超算长沙中心"Tianhe-1A"并行机上的测试结果表明,相对于采用Intel编译器最高优化级别的版本,其对100万网格点二维翼型算例,串行程序性能提高约22.2%~28.9%;对1.12亿网格点三角翼算例,并行程序性能提高约13.9%~20.2%。 This paper optimized the performance of a high order structure grid based parallel CFD (Computational Fluid Dynamics) application from a view of uniprocessor optimization. Performance critical variables were identified and trans- formed into constant parameters to enable compiler to apply specific high level optimizations. Multi-level data buffering was applied for the application's main data structures based on their structure and access characteristics, enabling the main computation codes to access these data more efficiently. Some loop transformations were applied tO optimize the application's memory access performance. Performance evaluation was carried out on "Tianhe-lA" parallel computer in- stalled at national super computer center in Changsha. Compared to the original code compiled by Intel compiler with the highest optimization level,the optimized code improves the serial performance for about 22. 2%-28. 9%for an 100 million grid points 2D aerofoil test case, and improves the parallel performance for about 13.9%-20. 2% for an 112 million grid points delta aerofoil test case.
出处 《计算机科学》 CSCD 北大核心 2013年第3期116-120,共5页 Computer Science
基金 国家重点基础研究发展计划(973)课题(G2009CB723803) 国家自然科学基金项目(11272352 61103014 60603055)资助
关键词 CFD并行计算 单机性能优化 关键变量参数化 分级数据缓存 Parallel CFD, Uniprocessor performance tuning, Key variable parameterization, Multi-level data buffering
  • 相关文献

参考文献6

  • 1Cosentino G B.Computational Fluid Dynamics Analysis Success Stories of X-plane Design to Flight Test[R].NASA/TM-2008-214636. 被引量:1
  • 2Resch M M,Küster U.HPC Processor Technologies and Their Impact on Simulation[J].Computational Science and High Performance Computing Ⅳ,Notes on Numerical Fluid Mechanics and Multidisciplinary Design,2011,115:17-28. 被引量:1
  • 3金君,乔楠,梁德旺.NAPA软件的并行优化[J].数值计算与计算机应用,2008,29(1):65-72. 被引量:2
  • 4Gropp W D,Kaushik D K,Keyes D E,et al.Latency,Bandwidth,and Concurrent Issue Limitations in High-Performance CFD[C] //Proceedings of the First M.I.T.Conference on Computational Fluid and Solid Mechanics.Cambridge,MA,2001. 被引量:1
  • 5高瑞泽,于剑,阎超.基于Cache友好方法的数值计算代码优化[J].计算机工程,2010,36(5):7-9. 被引量:1
  • 6http://www.intel.com/software/products/vtune/[OL].2012-05-30. 被引量:1

二级参考文献14

共引文献1

同被引文献30

  • 1Dongarra J,Foster I,等编著,莫则尧,陈军,等译.并行计算综论[M].北京:电子工业出版社,2005.3-28. 被引量:11
  • 2张毅锋,邓小刚,毛枚良,陈坚强.一种可压缩流动的高阶加权紧致非线性格式(WCNS)的加速收敛方法[J].计算物理,2007,24(6):698-704. 被引量:3
  • 3Dimitri J M. Unstructured mesh related issues in computational fluid dynamics (CFD) based analysis and design[EB/OL]. (2002 09-15) [2013-05-12]. http://imr. sandia, gov]papers]imrll]Mavriplis, pdf. 被引量:1
  • 4Latham R, Ross R, Koziol O. HPC I/O for computational scientists [EB/OL]. [2013 08 12] http://extremecomputing training, anl. gov/files/2013]OT/hpc-io-all-v21, pdf. 被引量:1
  • 5Pakalapati P D. Benchmarking parallel I/O performance for computational fluid dynamics applications [C] //Proc of the 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston, VA, USA American Institute of Aeronautics and Astronautics Inc, 2005 1-8. 被引量:1
  • 6Horne K, Benson N. An efficient and flexible parallel I/O implementation for the CFD general notation sytem [R]. Logan, Utah: Utah State University, 2009. 被引量:1
  • 7Yang Muqun, Koziol Q. Parallel HDF5 hints [EB/OL]. Urbana Champaign: NCSA HDF Group. [2013-02-251. http://www, hdfgroup, org[HDFS[PHDFS[para|lelhdf5hints. pdf. 被引量:1
  • 8Varman J B, Tang J, Varman P J. Instability in parallel I/O systems [J]. ACM SIGARCH Computer Architecture News.- Special Issue on Input]Output in Parallel Computer Systems, 1994, 22(4): 11-16. 被引量:1
  • 9Slotnick J,Khodadoust A,Alonso J,et al.CFD vision 2030study:a path to revolutionary computational aerosciences,Task NNL12AD05T[R].Hampton,Virginia,USA:NASA Langley Research Center,2013. 被引量:1
  • 10Top500 supercomputers site[EB/OL].[2014-11-30].http://www.top500.org/. 被引量:1

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部