期刊文献+

利用抗噪幂归一化倒谱系数的鸟类声音识别 被引量:17

Anti-Noise Power Normalized Cepstral Coefficients in Bird Sounds Recognition
下载PDF
导出
摘要 针对真实环境中各种背景噪声下的鸟类声音识别问题,提出了一种基于新型抗噪特征提取的鸟类声音识别技术.首先,根据适用于高度非平稳环境下的噪声估计算法求出噪声功率谱.其次,使用多频带谱减法对声音功率谱进行降噪处理.接着,结合降噪的声音功率谱提取抗噪幂归一化倒谱系数(APNCC).最后,采用支持向量机(SVM)分别对提取的APNCC,幂归一化倒谱系数(PNCC)和Mel频率倒谱系数(MFCC)对34种鸟类声音进行不同环境和信噪比情况下的对比实验.实验表明,提取的APNCC具有较好的平均识别效果及较强的噪声鲁棒性,更适用于信噪比低于30dB环境下的鸟类声音识别. In order to improve the accuracy of bird sounds recognition under different kinds of noise enviromnents in the real world, a new bird sounds recognition technology based on the APNCC extraction was proposed.First,the noise estimation algorithm for highly non-stationary environments was used to estimate the noise power spectrum of the bird sound in the noise environment. Second,the multi-band spectral subtraction was presented to achieve the background noise reduction. Then,the estimated clean bird sound spectrum was combined with the process of the PNCC extraction to calculate the APNCC. Finally, the comparison experiments of 34 bird sounds recognition in 3 different real environments under different SNRs were constructed, based on the combination of the SVM classifier and 3 different features, namely the APNCC, PNCC and MFCC. The experimental results show that the APNCC outperforms other features in the average recognition rate and the noise robustness, especially for the conditions of all SNRs lower than 30dB.
作者 颜鑫 李应
出处 《电子学报》 EI CAS CSCD 北大核心 2013年第2期295-300,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.61075022)
关键词 鸟类声音识别 非平稳噪声估计 多频带谱减法 抗噪幂归一化倒谱系数 MEL频率倒谱系数 bird sounds recognition non-stationary noise estimation multi-band spectral subtraction anti-noise power nor-realized cepstral coefficients ( APNCC ) Melfrequency cepstral coefficients (MFCC)
  • 相关文献

参考文献12

  • 1Somervuo P, Hanna A. Bird song recognition based on syllable pair histograms[ A]. IEEE International Conference on Acous- tics, Speech, and Signal Processing [ C ]. Monlreal, Canada: lF.F.F. Press,2004:825 - 828. 被引量:1
  • 2Cheng J,Sun Y,Ji L.A call-independent and automatic acous- tic system for the individual recognition of animals: a novel model using four passerines [ J]. Pattern Recognition, 2010, 43 (11) :3846- 3852. 被引量:1
  • 3冯霞,龚晓峰,张利丹,武瑞娟.基于纹理特征的背景噪声提取的应用研究[J].电子学报,2009,37(9):2092-2095. 被引量:16
  • 4Chu W, et al. Noise robust bird song detection using syllable pattern-based hidden markov models [ A ]. 1EEE International Conference on Acoustics, Speech, and Signal Processing [ C ]. Prague, Czech Republic: IEEE Press, 2011:345- 348. 被引量:1
  • 5Bardeli R, Wolff D, F, et al. Detecting bird sounds in a complex acoustic envirommnt and application to bioacoustic mon- itodng [ J]. Pattem Recognition letters,2010,31 (12) : 1524 - 1534. 被引量:1
  • 6Kim C, Stem R. Feature extraction for robust speech recognition based on maximizing the sharpness of the power distribution and on power flooring [ A ]. IF.I.E International Conference on Acoustics, Speech, and Signal Processing[ C]. Dallas, TX: IEEE Press, 2010.4574 - 4577. 被引量:1
  • 7Rangachari S, Loizou P C. A noise estimation algorithm for highly non-stationary environments [ J ]. Speech Communica- tion,2006,48(2) :220 - 231. 被引量:1
  • 8Kamath S, et al. A multi-band spectral subtraction method for enhancing speech corrupted by colored noise[ A]. 1EEE Interna- tional Conference on Acoustics, Speech, and Signal Processing [ C ]. Orlando, FL: 1EEE Press, 2002. IV-4164-1V-4164. 被引量:1
  • 9王玥,钱志鸿,王雪,程光明.基于伽马通滤波器组的听觉特征提取算法研究[J].电子学报,2010,38(3):525-528. 被引量:28
  • 10Slaney M.Auditory toolbox version 2 [ CP/OL]. https://en- gineering, purdue, edu/- malcolm/interval/1998-010/Audito- ryToolbox, zip, 2012-5-14. 被引量:1

二级参考文献19

  • 1谷炳海,张友鹏,徐顼.强噪声背景下的信号提取[J].科技资讯,2007,5(2):22-23. 被引量:7
  • 2黄晓斌,刘海涛,万建伟,胡德文.强噪声背景下基于子空间的盲信号提取[J].电子与信息学报,2006,28(11):2037-2040. 被引量:4
  • 3CHEN Chih-Hung,DEEN M J,et al. Extraction of the induced gate noise, channel noise, and their correlation in submicron MOSFETs from RF noise measurements[ J]. IEEE Transactions on Electron Devices,2001,48(12) :2884- 2892. 被引量:1
  • 4EVEN J, SARUWATARI H, et al. Frequency domain blind signal extraction: application to fast estimation of diffuse background noise[ A] .James L F. Hands-Free Speech Communication and Microphone Arrays( HSCMA 2008 )[ C ] . Piscataway NJ: IEEE Signal Proceedings Society,2008.212- 215. 被引量:1
  • 5Giannini F, Bourdel E, et al. A new nethod to extract noise parameters based on a frequency-and time-domain analysis of noise power measurements [ J ]. IEEE Transactions on Instrumentation and Measurement,2008,57(2):261 - 267. 被引量:1
  • 6SOFOU A, et al. Soil image segmentation and texture analysis: a computer vision approach[ J ]. Geoscience and Remote Sensing Letters, IEEE. 2005,2 (4) : 394 - 398. 被引量:1
  • 7HUNT M, et al. Spectrum monitoring handbook[ M]. Geneva, Switzerland: International Telecommunication Union (ITU), 2002. 172 - 180. 被引量:1
  • 8S Furui. Digital Speech Processing, Synthesis, and Recognition [ M]. New York: Marcel Dekker, 2001. 被引量:1
  • 9H Gish, M Schmidt. Text-independent speaker identification [ J]. IEEE Signal Proc, 1994,11 (4): 18 - 32. 被引量:1
  • 10D A Reynolds, et al. The SuperSID project: Exploiting high- level information for high-accuracy speaker recognition [ A ]. International Conference on Acoustics, Speech, and Signal Processing[ C]. Hong Kong, China: IEEE, 2003.4:784 - 787. 被引量:1

共引文献42

同被引文献149

引证文献17

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部