期刊文献+

水下图像边缘特征提取的BEMD自适应算法 被引量:7

Bi-dimensional empirical mode decomposition algorithm for underwater image edge detecting
下载PDF
导出
摘要 针对应用二维经验模式分解算法进行水下图像边缘检测时需要人工设定检测阈值的问题,提出一种BEMD与ROC曲线分析相结合的自适应图像边缘检测新方法.首先通过BEMD算法将水下图像分解成多层内禀模式函数(IMF)分量图像,然后利用不同参数组合的Canny检测算子对IMF分量图像进行细化处理,生成各层IMF分量的二值化图像集,最后利用ROC曲线分析技术求得IMF分量图像的最佳检测阈值,从而确定了理想的BEMD边缘特征提取图.实验结果表明:该算法能够避免人工设置检测阈值带来的操作误差,可实现图像边缘特征提取检测阈值的自适应设定.水下图像处理实例验证了所提方法的正确性和有效性. A novel method combining BEMD and receiver operating characteristics (ROC) curve is presented in this paper to solve the problem that the threshold is greatly affected by personal experience when underwater image edge detection is performed using a bi-dimensional empirical mode decomposition (BEMD) algorithm. Firstly, the BEMD algorithm is employed to decompose an underwater image into several intrinsic mode functions (IMFs) and a residual. Then several IMF images are computed using combinations of the Canny detector parameters, and the image binaryzation results are generated accordingly. The ideal BEMD edge feature extraction maps are estimated using correspondence threshold which is optimized by ROC analysis. The experimental results show that the proposed algorithm is able to avoid the operation error caused by manual setting of the detection threshold, and to adaptively set the image feature detection threshold. The proposed method has been proved to be accuracy and effectiveness by the underwater image processing examples.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2013年第2期117-122,共6页 Journal of Harbin Institute of Technology
基金 国家公益性行业科研专项(201003024) 辽宁省教育厅科研项目(LS2010046)
关键词 水下图像 二维经验模式分解 ROC曲线分析 边缘检测 underwater image hi-dimensional empirical mode decomposition receiver operating characteristics curve edge feature detector
  • 相关文献

参考文献22

  • 1JAFFE J S. Underwater optical imaging: the design of optimal systems [J]. Oceanography, 1998, 11 ( 1 ) : 40 -41. 被引量:1
  • 2NEVIS A. Adaptive background equalization and image processing applications for laser line scan data [ J ]. Proceedings of SPIE, 1999, 3710(2) : 1260 - 1271. 被引量:1
  • 3JAFFE J S. Underwater optical imaging: status and prospects[J]. Oceanography, 2001, 14(3):64-75. 被引量:1
  • 4BOYLE F. Image processing techniques for underwater acoustic image enhancement [ J ]. Journal of the Acoustical Society of America,2003, 114 (4) : 2398 - 2399. 被引量:1
  • 5BLAIR D G. Underwater acoustic imaging: image due to a specular reflector in the geometrical-acoustics limit [J]. Journal of Marine Science and Technology, 2006, 11(2) : 123 -130. 被引量:1
  • 6CHEN H H. Variation reduction in quality of an optical triangulation system employed for underwater range finding [ J ]. Ocean Engineering, 2002, 29 ( 15 ) : 1871 - 1893. 被引量:1
  • 7CHEN H H, WU C M. An algorithm of image processing for underwater range finding by active triangulation [ J ]. Ocean Engineering, 2004, 31 (8/9) : 1037 - 1062. 被引量:1
  • 8HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [ J ]. Proceedings of the Royal Society of London: Mathematical, Physical and Engineering Sciences, 1998, 454( 1971 ) : 903 - 995. 被引量:1
  • 9RILLING G, FLANDRIN P, GONCALVES P, et al. Bivariate empirical mode decomposition - J ]. IEEE Signal Processing Letters, 2007, 14(12) : 936 -939. 被引量:1
  • 10NUNES J C, NIANG O, BOUAOUNE Y, et al. Texture analysis based on the bidimensional empirical mode decomposition with gray-level co-occurrence models [ J ]. IEEE Machine Vision and Application, 2003,2:633 - 635. 被引量:1

二级参考文献7

  • 1程泽凯,林士敏,陆玉昌,蒋望东,陆小艺.基于Matlab的贝叶斯分类器实验平台MBNC[J].复旦学报(自然科学版),2004,43(5):729-732. 被引量:27
  • 2杨波,程泽凯,秦锋.用AUC评估分类器的预测性能[J].情报学报,2007,26(2):275-279. 被引量:2
  • 3Fawcett T. Roc Graphs: Notes and Practical Consideratiom for Researchers[ R]. Palo Alto, CA: HP Laboratories, 2004. 被引量:1
  • 4Bradley A P. The use of the area under the ROC curve in the evaluation of machine learning algorithms[J ]. Pattern Recognition Society, 1997,30:1145 - 1159. 被引量:1
  • 5Bohanec M.UCI [DB/OL]. 1997 -06 -01. hrtp://www.its. uci. edu/mleam/MLRepository. Html. 被引量:1
  • 6Provost F, Fawcett T. Analysis and Visualization of Classifier Performance: Comparison Under Imprecise Class and Cost Distributions[C]//In Proe. Third Intl. Conf, Knowledge Discovery and Data Mining (KDD - 97). Menlo Park, CA. AAAI Press, 1997-43 - 48. 被引量:1
  • 7Han J W Kamber M 范明 孟小峰译.数据挖掘概念与技术[M].北京:机械工业出版杜,2001.147-158. 被引量:113

共引文献31

同被引文献48

  • 1宋绍剑,朱靖旭.基于Mask R-CNN和迁移学习的水下生物目标识别研究[J].计算机应用研究,2020,37(S02):386-388. 被引量:10
  • 2张永宏,胡德金,张凯,徐俊杰.基于灰度矩的CCD图像亚像素边缘检测算法研究[J].光学技术,2004,30(6):693-695. 被引量:42
  • 3卢祖文.我国铁路的钢轨扣件[J].中国铁路,2005(7):25-27. 被引量:37
  • 4许宝杰,张建民,徐小力,李建伟.抑制EMD端点效应方法的研究[J].北京理工大学学报,2006,26(3):196-200. 被引量:54
  • 5Huang N E,Shen Z,Long S R,et al.The empirical mode decomposition and the Hilbert spectrum for non-linear and non-stationary time series analysis [J].Proceedings of Royal Society of London,1998,454(1971):903-995. 被引量:1
  • 6Nunes J C,Bouaoune Y,Deleehelle E,et al.Image analysis by bidimensional empirical mode decomposition [J].Image and Vision Computing,2003,12(21):1019-1026. 被引量:1
  • 7Li C Y,Han P,Ji H B.A novel surface interpolation approach bidimensional empirical mode decomposition [C]//Proceedings of International Conference on Network Computing and Information Security.Los Alamitos:IEEE Computer Society Press,2011:335-338. 被引量:1
  • 8Deleehelle E,Lemoine J,Niang O.Empirical mode decomposition:an analytical approach for sifting process [J].IEEE Signal Processing Letters,2005,12(11):764-767. 被引量:1
  • 9Diop E H S,Alexandre R,Boudraa A O.A PDE characterization of the intrinsic mode functions [C]//Proceedings of IEEE International Conference on Acoustics,Speech and Signal Processing.Los Alamitos:IEEE Computer Society Press,2009:3429-3432. 被引量:1
  • 10Diop E H S,Alexandre R,Boudraa A O.A PDE model for 2D intrinsic mode functions [C]//Proceedings of the 16th IEEE International Conference on Image Processing.Los Alamitos:IEEE Computer Society Press,2009:3961-3964. 被引量:1

引证文献7

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部