摘要
An interior point of a finite planar point set is a point of the set that is not on the boundary of the convex hull of the set. For any integer k ≥ 1, let h(κ) be the smallest integer such that every set of points in the plane, no three collinear, with at least h(κ) interior points, has a subset of points with exactly κ or κ + 1 interior points of P. We prove that h(5)=11.
基金
Supported by the National Natural Science Foundation of China(10901045,11171088)
Supported by the NSF of Hebei Province(A2010000828)
Supported by the SF of Hebei University of Science and Technology(QD200955)