期刊文献+

语音自适应压缩采样匹配追踪重构算法

A Speech Reconstruction Algorithm Using Adaptive Compressive Sampling Matching Pursuit
下载PDF
导出
摘要 基于小波分解下的语音压缩编码与重构框架,研究分析了含噪情况下贪婪算法的重构性能和抗噪性能,提出了一种改进的自适应压缩采样匹配追踪算法(ACoSaMP)。该算法可在稀疏度未知的情况下,通过设置可变步长分阶段实现对稀疏度的逼近。同时,在每次迭代过程中,用最小二乘法对残差信号进行估计,代替传统CoSaMP算法对整个信号的估计。最后用小波去噪法对合成语音进行处理。实验结果表明:不同压缩比下,该算法的主客观重构效果均优于现有同类算法,对噪声有较强的鲁棒性。 This article ation based on speech analyzes greedy algorithmg reconstruction and anti-noise performances in noise situ- compression coding and reconstruction framework via wavelet decomposition. We propose an improved adaptive compressive sampling matching pursuit algorithm (ACoSaMP). The algo- rithm can approximate the circumstances. Meanwhile sparsity in different phases by setting the variable step size in sparsity unknown , in every iteration, the residual signal is estimated using the least squares meth- od,instead of the traditional CoSaMP algorithm. synthesize speech. Experimental results show the outperform existing similar algorithms in different ness to noise. Finally, the wavelet de-noising method is employed to subjective and objective performances of the algorithm compression ratios and our algorithm has strong robut-
作者 石磊
出处 《南京邮电大学学报(自然科学版)》 北大核心 2013年第1期16-22,共7页 Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition
基金 国家自然科学基金(60971129)资助项目
关键词 压缩感知 重构算法 自适应压缩采样 匹配追踪 小波去噪 compressed sensing reconstruction algorithm adaptive compressive sampling matchingpursuit wavelet de-noising
  • 相关文献

参考文献19

  • 1DONOHO D. Compressed sensing[J]. IEEE Transactions on Infor- mation Theory,2006,52 (4) :1289 -1306. 被引量:1
  • 2TSAIG Y, DONOHO D. Extensions of compressed sensing[ J ]. Sig- nal Processing,2006,86 (3) :533 -548. 被引量:1
  • 3焦李成,杨淑媛,刘芳,侯彪.压缩感知回顾与展望[J].电子学报,2011,39(7):1651-1662. 被引量:315
  • 4CANDES E J, ROMBERG J,TAO T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency infor- mation [ J ]. IEEE Transactions on Information Theory, 2006, 52(2) :489 -509. 被引量:1
  • 5GIACOBELLO D,CHRISTENSEN M G,MURTHI M N,et al. Re- trieving sparse patterns using a compressed sensing framework : Ap- plications to speech coding based on sparse linear prediction [ J ]. IEEE Signal Processing Letters,2010,17( 1 ) :103 - 106. 被引量:1
  • 6叶蕾,杨震,郭海燕.基于小波变换和压缩感知的低速率语音编码方案[J].仪器仪表学报,2010,31(7):1569-1575. 被引量:23
  • 7GRIFFIN A,HIRVONEN T, MOUCHTARIS A, et al. Encoding the sinusoidal model of an audio signal using compressed sensing[ C ] // IEEE International Conference on Multimedia and Expo. 2009 : 153 - 156. 被引量:1
  • 8ZHU Lei,ZHU Yaolin, MAO Huan, et al. A new method for sparse signal denoising based on compressed sensing[ C] //Second Interna- tional Symposium on Knowledge Acquisition and Modeling. 2009:35 -38. 被引量:1
  • 9方红,杨海蓉.贪婪算法与压缩感知理论[J].自动化学报,2011,37(12):1413-1421. 被引量:101
  • 10CAT T T, WANG Lie, XU Guangwu. New bounds for restricted i- sometry constants [ J ]. IEEE Transactions on Information Theory, 2010,56(9) :4388 -4394. 被引量:1

二级参考文献120

  • 1乔建华,张井岗,张雪英.基于MATLAB的8kb/s CS-ACELP语音编码算法及实现[J].仪器仪表学报,2002,23(z1):194-195. 被引量:1
  • 2张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:70
  • 3孔红山,朱良学,章四兵.FS-1016 CELP语音编码的算法仿真[J].合肥工业大学学报(自然科学版),2006,29(10):1227-1230. 被引量:1
  • 4DONOHO D.Compressed sensing[J].IEEE Trans.on Information Theory,2006,52(4):1289-1306. 被引量:1
  • 5XU T,WANG W W.A compressed sensing approach for underdetermined blind audio source separation with sparse representation[J].2009-Sept:493-496. 被引量:1
  • 6TROPP J,GILBERT A.Signal recovery from random measurements via orthogonal matching pursuit[J].IEEE Trans.Inform.Theory,2007,53(12):4655-4666. 被引量:1
  • 7CANDES E,ROMBERG J,TAO T.Stable signal recovery from incomplete and inaccurate measurements[J].Comm.Pure and Appl.Math.,2006,59:1207-1223. 被引量:1
  • 8CHEN S,DONOHO D L,SAUNDERS M A.Atomic decomposition by basis pursuit[J].SIAM J.Sci.Comp,1999,20(1):33-61. 被引量:1
  • 9ANDRECUT M,ESTE R A,KAUFFMAN S A.Competitive optimization of compressed sensing[J].Journal of Physics A:Mathematical and Theoretical,2007,40:299-305. 被引量:1
  • 10WILLETT R M,RAGINSKY M.Performance bounds on compressed sensing with Poisson noise[C].IEEE International Symposium on Information Theory,Seoul,July 3,2009:174-178. 被引量:1

共引文献489

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部