期刊文献+

基于分布式控制算法的泵站水闸网络预测的研究 被引量:1

Research on Distribution Algorithm Based on Network Prediction of Pump Station
下载PDF
导出
摘要 针对目前我国现代泵站水闸综合自动化控制信息系统的发展现状,通过研究分布式系统中的时延和网络阻塞问题,提出了一种基于支持向量回归(ε-SVR)预测的分布式算法模型,该算法能够有效的预测时延变化,预测效果超过同类型的预测方法。实验和应用表明:与同类型预测方法相比,该模型不但能够在预测效果上达到现有预测水平,而且能大大提高预测速度,适应实时预测的需要。 As to the domestic background and ,significance in sluice integrated automation control system of pumping station,one distribution algorithm model based on ε-support vector regression-based static prediction is designed with studying the network delay and congestion of distribution system.This algorithm can work well in real systems,and it will give more precise results than other prediction models.The results of experiments show that the dynamic prediction model based onsupport vector regression-based static prediction can work well in real-time and provide accuracy comparable to or even better than that of BP-ANN methods.
作者 胡凯 张昱
出处 《工业控制计算机》 2013年第2期63-64,共2页 Industrial Control Computer
关键词 分布式 支持向量回归 预测 网络阻塞 distribution SVR prediction network congestion
  • 相关文献

参考文献9

  • 1F.LoPresti,N.G.Dufield,J.Horowitz,D.Towsley, Multicast-based inference of network-internal delay distributions[R],Univ.Mas- saehusets,Amherst, MA,Tech.Rep 1999,PP99-55. 被引量:1
  • 2G.Liang,B.Yu, Maximum Pseudo likelihood estimation in net- work tomograPhy,lEEE Trans,Signal Processing,2003,VOI.51 (8):2043-2053. 被引量:1
  • 3M.Coates,R.Nowak, Network tomography for internal delay es- timation, Proe.IEEE I nt.Conf.Aeoust. ,SPeeeh,and Signal Proc, 2001, PP3409-3412. 被引量:1
  • 4M.F.Shih,A.0.Hero,Unicast inference of network link delay dis- tributions from edge measurements[C],Proc. IEEE Int. Conf. Acoust.,Speech and Signal Processing.,2001 ,P3421-3424. 被引量:1
  • 5Y.Tsang,M.Coates,R.Nowak,NonParametric Internet tomogra- phy[C],Proc. IEEEInt. Conf.Aeoust.,Speech and Signal Pro- cessing, 2002 ,VO12:2045-2048. 被引量:1
  • 6JianqiangYi,QianWang, DonghinZhao, JolmT.Wen, BP neural network Prediction-based variable- Period sampling aP- Proach for networked control systems[J],APPlied Mathematics and ComPutation ,2007 ,VOI.185(2):976-988. 被引量:1
  • 7王国胜.核函数的性质及其构造方法[J].计算机科学,2006,33(6):172-174. 被引量:52
  • 8王汪,周志华,周傲英.机器学习及其应用[M].北京:清华大学出版社,2006:32-58. 被引量:2
  • 9陶卿,曹进德,孙德敏.基于支持向量机分类的回归方法[J].软件学报,2002,13(5):1024-1028. 被引量:46

二级参考文献14

  • 1Cristianini N, Shawe-Taylor J, Kandola. On Kernel Target Alignment. In: Proceedings of the Neural Information Processing Systems, NIPS'01, MIT Press, 2002 被引量:1
  • 2Lin Hsuan-Tien, Lin Chih-Jen. A study on sigmoid kernels for SVM and the training of non-PSD kernels by SMO-type methods.http: //www. csie. ntu. edu. tw/-cjlin/papers. html. 2003 被引量:1
  • 3Steinwart I. On the influence of the kernel on the consistency of support vector machines. The Journal of Machine Learning Research, 2002,2:67-93 被引量:1
  • 4Haussler D. Convolutional kernels on discrete structures: [technical report]. UCSC-CRL-99-10, Santa Cruz: Computer Science Department, University of California, 1999 被引量:1
  • 5Feller W. An introduction to probability theory and its applications. Vol 2. New York:Wiley, 1971 被引量:1
  • 6Burges C. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 1998, 2:121-167 被引量:1
  • 7Vapnik V. Statistical learning theory. New York: John Wiley&Sons, Inc, 1998 被引量:1
  • 8Cristianini N, Shawe Taylor J. An introduction to support Vector Machines: and other kernel-based learning methods. New York:Cambridge University Press, 1999 被引量:1
  • 9Hsu C-W, Chang C-C, Lin C-J. A practical guide to support vector classification, http: //www. csie. ntu. edu. tw/-cjlin/papers.html. 2003 被引量:1
  • 10Poggio. On optimal nonlinear associative recall. Biological Cybernetics, 1975, 19:201-209 被引量:1

共引文献95

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部