期刊文献+

利用可变形统计模型进行膝关节建模与运动测量 被引量:3

Knee joint model reconstruction and kinematic measurements using a statistical deformation model
原文传递
导出
摘要 该文以人体膝关节个性化三维建模为目的,并论证该模型应用于在体运动测量的可行性。基于可变形统计模型理论,寻找模型表面的特征配对点,建立膝关节统计模型训练集;通过主分量分析的方法确定特征点在三维空间的分布规律;在重建新模型时,通过统计模型变形,以X线图像中膝关节的二维透视信息为形变基准,从而实现膝关节个性化三维建模。研究结果表明:相比MRI(magnetic reso-nance imaging)模型,本文重建的完整膝关节三维骨骼模型精度为0.5mm,该模型用于运动测量的精度为0.59mm和1.25°。可变形统计模型技术可以用于建立受试者膝关节个性化三维模型,并测量膝关节的在体三维运动。 The objective of this study was to reconstruct patient-specific 3D knee joint models and measure the in-vivo knee joint kinematics. The training set for the statistical deformation model was constructed from characteristic points of a group of knee models. Principal component analysis was used to find the spatial variations of the points with a patient-specific 3D knee model developed based on 2D radiographic images and the trained models. The 3D bone model was within 0.5 mm compared to a MRI (magnetic resonance imaging) model. The kinematic measurements were accurate within 0. 59 mm and 1.25°. The statistical deformation model was validated as a useful method for reconstructing patient-specific knee models and measuring knee kinematics in three dimensions.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第1期139-144,共6页 Journal of Tsinghua University(Science and Technology)
基金 国家"九七三"重点基础研究项目(2011CB707701) 高等学校博士学科点专项科研基金资助项目(20090002110023 20110002110024)
关键词 生物力学 可变形统计模型 膝关节 biomechanics statistical deformation model knee joint
  • 相关文献

参考文献12

  • 1Heimann T, Meinzer H P. Statistical shape models or 3D medical image segmentation: A review [J]. Medical Image Analysis, 2009, 13(4): 543-563. 被引量:1
  • 2Zheng G, Bal|ester M A, Styner M, et al. Reconstruction of patient-specific 3D bone surface from 2D calibrated fluoroscopic images and point distribution model [J]. Medical Image Computing and Computer-Assisted Intervention, 2006, 9(1): 25-32. 被引量:1
  • 3Sadowsky O, Chinta|apani G, Taylor R H. Deformable 2D-3D registration of the pelvis with a limited tield of view, using shape statistics [J]. Medical Image Computing and Computer-Assisted Intervention, 2007, 10(2) : 519 - 526. 被引量:1
  • 4Cresson T, Chav R, Branehaud D, et al. Coupling ZD/3D registration method and statistical model to perform 3D reconstruction from partial X-rays images data [C]// The 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Minneapolis, USA: IEEE Press, 2009: 1008-1011,. 被引量:1
  • 5Zheng G, Nolte L P, Ferguson S J. Scaled, patient-specific 3D vertebral model reconstruction based on 2D lateral fluoroscopy [J]. International Journal of Computer Assisted Radiology and Surgery, 2011, 6(3) : 351 - 366. 被引量:1
  • 6Dworzak J, Lamecker H, Berg J, et al. 3D reconstruction of the human rib cage from 2D projection images using a statistical shape model [J]. International Journal of Computer Assisted Radiology and Surgery 2010, 5(2): 111-124. 被引量:1
  • 7Khallaghi S, Mousavi P, Gong R H, et al. Registration of a statistical shape model o the lumbar spine to 3D ultrasound images. [J]. Medical Image Computing and Computer-Assisted Intervention, 2010, 13(2): 68- 75. 被引量:1
  • 8Zhu Z, Li G. Construction of 3D human distal femoral surface models using a 3D statistical deformable model [J]. Journal of Biomechanics, 2011, 44(13) : 2362 - 2368. 被引量:1
  • 9Stegmann M B, Gomez D D. A brief introduction to statistical shape analysis [Z/OL]. (2012-03-05), http: //graphics. stanford, edu/courses/cs164-09-spring/Handouts/ paper_shape spaces imm403, pdf. 被引量:1
  • 10Wu G, Cavanagh P R. ISB recommendations for standardization in the reporting of kinematic data [J]. Journal of Biornechanics , 1995, 28(10) : 1257 - 1261. 被引量:1

同被引文献33

  • 1Xia Shihong, Wang Congyi, Chai Jinxiang, et al. Realtime Style Transfer for Unlabeled Heterogeneous Human Motion [ J ]. ACM Transactions on Graphics, 2015,34(4) :119-130. 被引量:1
  • 2Shin S Y,Kim C H. Human-like Motion Generation and Control for Humanoid' s Dual Arm Object Manipula- tion [J]. IEEE Transactions on Industrial Electronics, 2015,62(4) :2265-2276. 被引量:1
  • 3Li Yanan,Ge S S. Human-robot Collaboration Based on Motion Intention Estimation [ J ]. IEEE/ASME Tran- sactions on Mechatronics, 2014,19 ( 3 ) : 1007-1014. 被引量:1
  • 4Wang J M, Fleet D J, Hertzmann A. Gaussian Process Dynamical Models for Human Motion [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008,30 ( 2 ) : 283-298. 被引量:1
  • 5Urtasun R, Fleet D J, Lawrence N D. Modeling Human Locomotion with Topologically Constrained Latent Variable Models [ M ]. Berlin, Germany : Springer, 2007 : 104-118. 被引量:1
  • 6Taylor G W,Hinton G E,Roweis S T. Modeling Human Motion Using Binary Latent Variables [ C ]//Proceedings of Advances in Neural Information Processing Systems. South Lake Tahoe, USA : IEEE Press, 2013 : 1345-1352. 被引量:1
  • 7Meek C, Chickering D M, Heckerman D. Autoregressive Tree Models for Time-series Analysis [J]. ACM Transactions on Graphics ,2012,23 ( 11 ) :229-244. 被引量:1
  • 8Suzuki T, Tanaka K. Mean-variance Portfolio Model Modified by Nonlinear Bagging Predictors [ J]- Journalof Signal Processing, 2014,18 ( 6 ) : 283-290. 被引量:1
  • 9Li Guoqiang, Niu Peifeng. An Enhanced Extreme Learning Machine Based on Ridge Regression for Regression [ J ]. Neural Computing and Applications, 2013,22(34) :803-810. 被引量:1
  • 10Geremia E,Clatz O, Menze B H, et al. Spatial Decision Forests for MS Lesion Segmentation in Multi-channel Magnetic Resonance Images [ J 1 Neurolmage, 2011, 57(2) :378-390. 被引量:1

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部