期刊文献+

名老中医王自立运脾系列方剂方证知识数据挖掘研究 被引量:7

Knowledge Mining of Prescriptions and Syndromes in Famous Veteran TCM Doctor WANG Zili′s YunPi Prescriptions Series Based on Data Mining Method
下载PDF
导出
摘要 目的:利用中医处方智能分析系统,对王自立经验方运脾汤、归芍运脾汤、运肠润通汤进行分析,分析其方证知识规律,为继承和发扬提供依据。方法:收集王老运脾汤、归芍运脾汤、运肠润通汤典型病例,录入数据库,进行方证分析。结果:运脾汤综合性味偏平,综合药味偏甘,主要归经为脾经;主要功效为补脾益胃;临床适宜于脾胃虚弱、脾失健运证。归芍运脾汤综合性味偏平,偏温,综合药味偏苦,主要归经为脾、肺、肝经;主要功效为补脾利水、疏肝和胃;最适宜于脾胃虚弱、肝郁证。运肠润通汤综合性味偏温,综合药味偏甘,主要归经为脾、大肠经;主要功效为滑肠,适宜于大肠燥证。结论:本研究结果体现了王老"健脾先运脾,运脾必调气""治肝必柔肝,柔肝先养肝""补而通之"的学术思想。 Objective: To provide the evidence for inheritance and development through analyzing the rules of prescriptions and syndromes knowledge and WANG Zili's experiential prescriptions YunPiTang, GuiShao YunPiTang and YunChang RunTongTang with TCM prescriptions intelligence analysis system. Method: Professor Wan's classic cases of YunPiTang, GuiShao YunPiTang and YunChang RunTongTang were collected and typed into the data, prescriptions and syndromes were analyzed. Result: YunPiTang was partially bland and sweet, of spleen meridian; invigorating spleen and stomach; suitable for spleen-stomach deficiency and spleen failing in transportation. GuiShao YunPiTang was partially bland, warm and bitter, of spleen, lung and liver meridian; used to invigorate spleen and in- duce diuresis, soothe liver and harmonize stomach; to spleen-stomach deficiency and liver depression. YunChang RunTongTang partially warm and sweet, of spleen and large intestine meridian; applied to lubricate large intestine, suitable for fluid insufficiency of large intestine. Conclusion: Results of the study represent professor Wang's academic thinking "fortifying spleen should activate spleen first, activating spleen must regulate Qi", "Treating liver must soften it, softening liver should nourish liver first" and "invigorating to clear".
机构地区 甘肃省中医院
出处 《西部中医药》 2013年第2期45-48,共4页 Western Journal of Traditional Chinese Medicine
基金 甘肃省省自然科学研究基金计划项目(编号2007GS01711)
关键词 王自立 运脾系列方剂 方剂智能分析 数据挖掘 WANG Zili YunPi prescription series prescription intelligence analysis data mining
  • 相关文献

参考文献4

二级参考文献6

共引文献54

同被引文献107

引证文献7

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部