期刊文献+

电纺Pd纳米粒子/碳纳米纤维复合材料对甲醇的电催化氧化研究 被引量:5

Electrospun Palladium Nanoparticle-Loaded Carbon Nanofiber for Methanol Electro-oxidation
下载PDF
导出
摘要 利用静电纺丝技术制备了含有乙酰丙酮钯(Pd(Ac)2)前体的聚丙烯腈(PAN)纳米纤维,经H2还原和900℃碳化处理得到了Pd纳米粒子负载的碳纳米纤维复合材料(Pd/CNF)。此方法中,CNF的制备和Pd纳米粒子的形成是同步进行的,无需对碳载体进行任何预处理,实现了纳米粒子负载CNF的一步制备,简化了实验步骤的同时确保CNF载体骨架的完整性。扫描电镜(SEM)和透射电镜(TEM)分析表明,大小均一的Pd纳米粒子牢固地分散在CNF表面,其粒径约为60 nm。X-射线衍射(XRD)和X-射线光电子能谱(XPS)表征了Pd/CNF的晶体结构。Pd纳米粒子以单质态形式存在,具有面心立方体结构。通过循环伏安法(CV)和计时电流法等电化学方法研究了Pd/CNF复合材料对甲醇的电催化氧化情况,Pd/CNF对甲醇氧化显示出优异的催化活性和稳定性,优于商业化Pd/C催化剂。 Pd nanoparticle-loaded carbon nanofiber composite (Pd/CNF) was prepared via electrospinning and following carbonization techniques. In this method, the synthesis of CNF and loading Pd nanoparticles were integrated into a simple one-step, and the CNF support did not suffer from any surface functionalization treatment and could keep the robust framework. The morphology and crystal structure of Pd/CNF were charac- terized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results indicated that uniform Pd nanoparticles were firmly dispersed on or in CNF with face-centered cubic structure. The electrocatalytic activity of Pd/CNF toward methanol oxidation was measured by cyclic vohammetry (CV) and chronoamperometry. The electro- chemical measurements revealed that Pd/CNF exhibited higher eleetroeatalytic activity and better stability than that of commercial Pd/C.
出处 《分析化学》 SCIE EI CAS CSCD 北大核心 2013年第2期210-214,共5页 Chinese Journal of Analytical Chemistry
基金 国家自然科学基金(Nos.21155002 21105098)资助
关键词 静电纺丝 PD纳米粒子 碳纳米纤维 甲醇氧化 燃料电池 Electrospinning Palladium nanoparticle-loaded carbon nanofiber Methanol oxidation Fuel cell
  • 相关文献

参考文献19

  • 1Gharibi H,Kakaei K,Zhiani M.J.Phys.Chem.C,2010,114(11):5233-5240. 被引量:1
  • 2Guo S J,Zhang S,Sun X L,Sun S H.J.Am.Chem.Soc.,2011,133(39):15354-15357. 被引量:1
  • 3Bianchini C,Shen P K.Chem.Rev.,2009,109(9):4183-4206. 被引量:1
  • 4Antolini E.Energ.Environ.Sci.,2009,2(21):915-931. 被引量:1
  • 5Wei W T,Chen W.J.Power Sources,2012,204(15):85-88. 被引量:1
  • 6TsaiM C,Yeh T K,Tsai C H.Electrochem.Commun.,2006,8(9):1445-1452. 被引量:1
  • 7Tian Z Q,Jiang S P,Liang Y M,Shen P K.J.Phys.Chem.B,2006,110(11):5343-5350. 被引量:1
  • 8Guo S J,Dong S J,Wang E W.ACS Nano,2010,4(7):547-555. 被引量:1
  • 9Van der Lee M K,Van Dillen A J,Bitter J H,De Jong K P.J.Am.Chem.Soc.,2005,127(39):13573-13582. 被引量:1
  • 10Cao L,Scheiba F,Roth C,Schweiger F,Cremers C,Stimming U,Fuess H,Chen L,Zhu W,Qiu X.Angew.Chem.Int.Ed.,2006,45(32):5315-5319. 被引量:1

二级参考文献45

共引文献22

同被引文献20

引证文献5

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部