期刊文献+

基于分块显示的工字型焊件感兴趣区域自适应提取 被引量:2

Adaptive Extraction of ROI Based on Blocking Display for I Style Weldment
下载PDF
导出
摘要 感兴趣区域的自适应提取对焊接缺陷评价系统运行速度的提高有重要意义。本文针对工字型焊件射线检测图像的特殊性,提出了一种基于图像分块显示的感兴趣区域自动提取新方法,该方法可精确定位感兴趣区域边缘值,从而实现感兴趣区域的自适应提取。此外,与手动提取方法进行了对比。结果表明:本文提出的方法能很好地实现检测图像中感兴趣区域的自适应提取,且提取结果不受腹板高度变化的影响,算法的鲁棒性强;相比于手动法,提取结果更精确,避免了频繁修改程序的操作,后期图像处理的速度显著提高。该算法的实现使整个图像处理及缺陷评价系统成为了一个完整的整体,工程应用前景广阔。 To improve the running speed of evaluation system of weld defects, it is significant to achieve the adaptive extraction of ROI (Regions of Interest). According to the particularity of X-ray detection images for I style weldments, a new method based on blocking display was put forward, which could extract the ROI adaptively. Using this method the marginal value of ROI could be located exactly, and the adaptive extraction of ROI could be obtained. In addition, the comparison between the provided method in this paper and manual method were carded out. The experimental results show that the adaptive extraction of ROI is achieved perfectly by the provided method. The change of sternum height can not influence the accurate of extraction result, besides the algorithm robustness is high. Comparing with the manual method the extraction result is more precise, and it can avoid the fi'equent operation of modify program, this can greatly enhance the speed of subsequent image processing. The achievement of the above algorithm makes the whole image processing and defects evaluation system become a full integrality, and its foreground of engineering application is extensive.
出处 《热加工工艺》 CSCD 北大核心 2013年第5期158-160,163,共4页 Hot Working Technology
基金 哈尔滨工业大学先进焊接与连接国家重点实验室开放课题(AWPT-M12-05) 江苏省高校自然科学基金资助项目(12KJD430003)
关键词 工字型焊件 X射线图像 感兴趣区域 分块显示 自适应提取 I style weldment X-ray image ROI blocking display adaptive extraction
  • 相关文献

参考文献7

二级参考文献19

  • 1罗爱民,殷国富,魏万迎.基于自适应形态学滤波算法的X射线图像的缺陷提取[J].核动力工程,2006,27(6):47-51. 被引量:2
  • 2Kaftandjian V, Joly A, Odievre T, et al. Automatic Detection and Characterization of Aluminum Weld De fects: Comparison between Radiography, Radioscopy and Human Interpretation [C]//Proceedings of the Seventh European Conferences on Nondestructive Testing. Copenhagen, 1998 : 1179-86,. 被引量:1
  • 3Mery D, Jaeger T,Filbert D. A Review of Methods for Automated Recognition of Casting Defects [J]. Insight,2002, 44(7) :428-436. 被引量:1
  • 4Mery D, Filbert D. Automated Flaw Detection in Aluminium Castings Based on the Tracking of Potential Defects in a Radioscopic Image Sequence[J]. IEEE Transactions on Robotics and Automation, 2002, 18 (6) :890-901. 被引量:1
  • 5Quan Jinjuan, Wen Xianbin, Wang Chundong, et al. Multiscale Segmentation of SAR Images Via Two Neural Networks[J]. Journal of Optoeleetronies · Laser, 2008,19(4) :542-545. 被引量:1
  • 6Sun Y, Bei P, Sun H Y, et at. Real--time Automatic Detection of Weld Defects in Steel Pipe[J]. NDT&E International, 2005,38 (7): 522-528. 被引量:1
  • 7Shi Duanhu, Gang Tie, Yang Shuangyang, et al. Research on Segmentation and Distribution Features of Small Defects in Precision Weldments with Complex Structure[J]. NDT&E International, 2007, 40(5) :397 -404. 被引量:1
  • 8[1]Wu R Y,Tsai W H.A new one-pass parallel thinning algorithm for binary images.Pattern Recognition Letters,1992;13:715-729 被引量:1
  • 9[2]http://www.jpeg.org/ 被引量:1
  • 10Ren Dahai,You Zheng.Automatic inspection techniques by real-time radiography for weld defects[].Journal of Tsinghua University (Science and Technology).2001 被引量:1

共引文献16

同被引文献20

  • 1Duan-hu Shi, Gang Tie. Automatic extraction and visualization of spatial position data for bulk porosities in laser weldments with complex structures [J]. NDT&E International, 2013, 54 (3): 133-141. 被引量:1
  • 2Yong Wang, Hui Guo. Weld Defect Detection of X-ray Ima- ges Based on Support Vector Machine [ J ]. IETE Technical Review,2014,31 (2) : 137 - 142. 被引量:1
  • 3B Venkatraman, M M Anishin Raj, V Vaithiyanathan. Weld Defect Detection using Iterative Image Reconstruction Meth- ods [J]. Indian Journal of Science and Technology, 2013, 6(4) : 4378 -4383. 被引量:1
  • 4Yong Wang, Hui Guo. Weld Defect Detection of X-ray Ima- ges Based on Support Vector Machine [ J ]. IETE Technical Review, 2014, 31(2) : 137 - 142. 被引量:1
  • 5Debashis Sen, Sankar K Pal. Gradient histogram: Threshol- ding in a region of interest for edge detection[ J]. Image and Vision Computing, 2009, 28 (4) : 677 - 695. 被引量:1
  • 6Zhengqiu Zhang, Kaiyu Liu, Li Zhu. The new approxima- tion operators with S functions [ J ]. Journal of Applied Math- ematics and Computing, 2013, 42( 1 ): 455-468. 被引量:1
  • 7Jianji Wang, Nanning Zheng, Yuehu Liu. Parameter anal- ysis of fractal image compression and its applications in im- age sharpening and smoothing [ J ]. Signal Processing : Im- age Communieatiota, 2013, 28(6): 681 -687. 被引量:1
  • 8Saroj K Meher. Recursive and noise-exclusive fuzzy switc- hing median filter for impulse noise reduction [ J ]. Engi- neering Applications of Artificial Intelligence, 2014, 30 (4) : 145 - 154. 被引量:1
  • 9IB Mhamed, S Abid. Weld defect detection using a modi- fied anisotropic diffusion model [ J ]. Journal on Advances in Signal Processing, 2012, 35(12) : 1223 - 1231. 被引量:1
  • 10Shin-Min Chao, Du-Ming Tsai. Anisotropic diffusion with generalized diffusion coefficient function for defect detection in low-contrast surface images [ J ]. Pattern Recognition, 2010, 43(6) : 2132 -2144. 被引量:1

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部