期刊文献+

Dynamics of Strigolactone Function and Shoot Branching Responses in Pisum sativum 被引量:12

Dynamics of Strigolactone Function and Shoot Branching Responses in Pisum sativum
原文传递
导出
摘要 Strigolactones (SLs), or their metabolites, were recently identified as endogenous inhibitors of shoot branch- ing. However, certain key features and dynamics of SL action remained to be physiologically characterized. Here we show that successive direct application of SL to axillary buds at every node along the stem can fully inhibit branching. The SL inhibition of early outgrowth did not require inhibitory signals from other growing buds or the shoot tip. In add- ition to this very early or initial suppression of outgrowth, we also found SL to be effective, up to a point, at moderating the continuing growth of axillary branches. The effectiveness of SL at affecting bud and branch growth correlated with the ability of SL to regulate expression of PsBRC1. PsBRC1 is a transcription factor that is expressed strongly in axillary buds and is required for SL inhibition of shoot branching. Consistent with a dynamic role of the hormone, SL inhibition of bud growth did not prevent buds from later responding to a decapitation treatment, even though SL treatment immediately after decapitation inhibits the outgrowth response. Also, as expected from the hypothesized branching control network in plants, treatment of exogenous SL caused feedback down-regulation of SL biosynthesis genes within 2 h. Altogether, these results reveal new insights into the dynamics of SL function and support the premise that SLs or SL-derived metabolites function dynamically as a shoot branching hormone and that they act directly in axillary buds. Strigolactones (SLs), or their metabolites, were recently identified as endogenous inhibitors of shoot branch- ing. However, certain key features and dynamics of SL action remained to be physiologically characterized. Here we show that successive direct application of SL to axillary buds at every node along the stem can fully inhibit branching. The SL inhibition of early outgrowth did not require inhibitory signals from other growing buds or the shoot tip. In add- ition to this very early or initial suppression of outgrowth, we also found SL to be effective, up to a point, at moderating the continuing growth of axillary branches. The effectiveness of SL at affecting bud and branch growth correlated with the ability of SL to regulate expression of PsBRC1. PsBRC1 is a transcription factor that is expressed strongly in axillary buds and is required for SL inhibition of shoot branching. Consistent with a dynamic role of the hormone, SL inhibition of bud growth did not prevent buds from later responding to a decapitation treatment, even though SL treatment immediately after decapitation inhibits the outgrowth response. Also, as expected from the hypothesized branching control network in plants, treatment of exogenous SL caused feedback down-regulation of SL biosynthesis genes within 2 h. Altogether, these results reveal new insights into the dynamics of SL function and support the premise that SLs or SL-derived metabolites function dynamically as a shoot branching hormone and that they act directly in axillary buds.
出处 《Molecular Plant》 SCIE CAS CSCD 2013年第1期128-140,共13页 分子植物(英文版)
关键词 hormonal regulation DORMANCY shoot branching. hormonal regulation dormancy shoot branching.
  • 相关文献

参考文献2

二级参考文献104

  • 1Aguilar-Martfnez, J,A., Poza-Carri6n, C., and Cubas, R (2007). Arabidopsis BRANCHEDI acts as an integrator of branching sig- nals within axillary buds. Plant Cell. 19, 458-472. 被引量:1
  • 2Agusti, J., Herold, S., Schwarz, M., Sanchez, R, Ljung, K., Dun, E. A., Brewer, RB., Beveridge, C. A., Sieberer, T., Sehr, E.M., et al. (2011). Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants. Proc. Natl Acad. Sci. U S A. 108, 20242-20247. 被引量:1
  • 3Akiyama, K., Matsuzaki, K., and Hayashi, H. (2005). Plant sesquit- erpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature. 435, 824-827. 被引量:1
  • 4Akiyama, K., Ogasawara, S., Ito, S., and Hayashi, H. (2010). Structural requirements of strigolactones for hyphal branching in AM fungi. Plant Cell Physiol. 51, 1104-1117. 被引量:1
  • 5Alder, A., Jamil, M., Marzorati, M., Bruno, M., Vermathen, M., Bigler, P., Ghisla, S., Bouwmeester, H., Beyer, R, and AI-Babili, S. (2012). The path from carotene to carlactone, a strigolac- tone-like plant hormone. Science. 335, 1348-1351. 被引量:1
  • 6Arite, 1"., Iwata, H., Ohshima, K., Maekawa, M., Nakajima, M., Kojima, M., Sakakibara, H., and Kyozuka, J. (2007). DWARFIO, an RMSI/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Plant J. 51, 1019-1029. 被引量:1
  • 7Arite, T., Umehara, M., Ishikawa, S., Hanada, A., Maekawa, M., Yamaguchi, S., and Kyozuka, J. (2009). d14, a strigolactone- insensitive mutant of rice, shows an accelerated outgrowth of tillers. Plant Cell Physiol. 50, 1416-1424. 被引量:1
  • 8Balla, J., Kalousek, P., Reinehl, V., Friml, J., and Prochzka, S. (2011). Competitive canalization of PIN-dependent auxin flow from axillary buds controls pea bud outgrowth. Plant J. 65, 571-577. 被引量:1
  • 9Bates, T.R., and Lynch, J.R (2000). Plant growth and phospho- rus accumulation of wild type and two root hair mutants of Arabidopsb thaliana (Brassicaceae). Am. J. Bot. 87, 958-963. 被引量:1
  • 10Bennett, T., Sieberer, T., Willett, B., Booker, J., Luschnig, C., and Leyser, O. (2006). The Arabidopsis MAX pathway controls shoot branching by regulating auxin transport. Curr. Biol. 16, 553-563. 被引量:1

共引文献34

同被引文献105

引证文献12

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部