期刊文献+

Gabor字典及l_0范数快速稀疏表示的人脸识别算法 被引量:15

Face recognition based on fast sparse representation of Gabor dictionary and l_0 norm
下载PDF
导出
摘要 针对光照、遮挡、伪装情况下,识别率比较低,识别时间长的问题,本文提出了基于Gabor字典及l0范数快速稀疏表示的人脸识别算法。Gabor小波提取的特征能够克服遮挡、光照等干扰对人脸识别的影响,平滑l0算法通过平滑连续函数来近似l0范数,只需较少测量值并且较快速度便能重构稀疏信号。本算法通过提取人脸的Gabor特征、主成分分析法(PCA)降低维度,l0范数快速稀疏分类完成识别。在伪装人脸情况下,分块计算Gabor人脸特征,提高Gabor字典的形成速度。基于AR人脸数据库的实验结果表明,本算法可在一定程度上提高识别速度和识别时间,即使在小样本情况下,依然具有较高的识别率。 Many classic face recognition algorithms degrade sharply when they are used at identifying an individual under various conditions such as illumination, camouflage. A fast sparse representation face recognition algorithm based on Gabor dictionary and smoothed 10 norm is presented in this paper. Gabor filters, which could effectively extract local directional features of the image at multiple scales, are less sensitive to the variations of illumination and camouflage. Smoothed 10 algorithm requires fewer measurement values by continuously differentiable function approximation 10 norm. The algorithm obtains the local feature by extracting Gabor feature, reduces the dimensions by principal component analysis (PCA) and realizes fast sparse by 10 norm. Under camouflage condition, the algorithm blocks Gabor facial feature and improves the speed of formation of the Gabor dictionary. Experimental results on AR face database show that the proposed algorithm can improve recognition speed and recognition rate and can generalize well to the face recognition, even with a few training image per class.
出处 《信号处理》 CSCD 北大核心 2013年第2期256-261,共6页 Journal of Signal Processing
基金 国家自然科学基金项目(No.61072127) 广东省自然科学基金项目(NO.S2011040004211 No.10152902001000002 NO.S2011010001085 No.07010869) 广东省高等学校高层次人才项目(粤教师函[2010]79号) 广东高校优秀青年创新人才培养计划项目资助(No.2012LYM_0127)
关键词 稀疏表示 Gabor字典 l0 范数 伪装 sparse representation Gabor dictionary lo norm camouflage
  • 相关文献

参考文献12

  • 1John Wright, Allen Yang, Arvind Ganesh and S. Shankar Sastry. Robust Face recognition via Sparse Representation [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2009,31 : 210-227. 被引量:1
  • 2M. Turk and A. Pentland. Eigenfaces for recognition [ J ]. Journal of Cognitive Neuroscience, 1991, 3 ( 1 ) :71- 86. 被引量:1
  • 3K. Etemad and R. Chellappa. Discriminant analysis for recognition of human face images I J]. J. Opt. Soc. Am. A, 1997, 14(8): 1724-1733. 被引量:1
  • 4M. Bartlett, J. Movellan, and T. Sejnowski. Face recog- nition by independentcomponent analysis[J~. IEEE Trans- actions on Neural Networks, 2002, 13 (6) : 1450-1464. 被引量:1
  • 5Shen L L and Bai L. A review on Gabor wavelets for face recognition [ J]. Pattern Analysis and Application, 2006, 9(2) :273-292. 被引量:1
  • 6Amin M A and Yan H. An empirical study on the charac- teristics of Gabor representations for face recognition[ J]. International Journal of Pattern Recognition and Artificial Intelligence, 2009, 23 (3) : 401-431. 被引量:1
  • 7M. Yang and L. Zhang, Gabor Feature based Sparse Rep- resentation for Face Recognition with Gabor Occlusion Dic- tionaryE C ]. in ECCV, 2010. 被引量:1
  • 8Dror Baron, Marco F. Duarte. Distribu'ted Compressivq Sensing[ C]. Proceedings of the Sensor, Signal and Infor mation Processing (SenSIP) Workshop, 2008. 被引量:1
  • 9Mohimani H, Zadeh M, Jutten C. A fast approach for o- ver complete sparse decomposition based on smothed L0 norm[ J]. IEEE Transactions on Signal Processing,2009, 57(1) :289-301. 被引量:1
  • 10Hyder M,Mahata K. An improved smoothed LO approxima- tion algorithm for sparse representation [ J ]. IEEE Transac- tions on Signal Processing,2010,58(4) : 2194 -2205. 被引量:1

二级参考文献24

  • 1E. Cand6s. Compressive sampling[ A]. Proceedings of in- ternational congress of mathematicians. Zurich, Switzer- land: European Mathematical Society Publishing House, 2006,1433-1452. 被引量:1
  • 2R. Baraniuk. Compressive sensing[J]. IEEE Signal Pro- cessing Magzine ,2007,24(4) : 118-121. 被引量:1
  • 3E. Cands, J. Romberg and T. Tao. Stable signal recovery from incomplete and inaccurate measurements [ J ]. Com- munications on Pure and Applied Mathematics, 2006,59 ( 8 ) : 1207-1223. 被引量:1
  • 4V. Goyal, A. Fletcher, and S. Rangan. Compressive sam- piing and lossy compression [ J ]. IEEE Signal Process Magzine, 2008,25 ( 2 ) : 48 -56. 被引量:1
  • 5M. Lustig, D. Donoho, and J. Partly. Sparse MRI: the ap- plication of compressed sensing for rapid MR imaging[ J 3. Magnetic Resonance in Medicine ,2007,58 : 1182-1195. 被引量:1
  • 6W. Bajwa, J. Haupt, A. Sayeed, et al. Compressive wire- less sensing [ A ]. Proceedings of the 5th International Conference on Information Processing in Sensor Networks. New York : Association for Computing Machinery, 2006,134-142. 被引量:1
  • 7B. Thomas, E. D. Mike. Gradient Pursuits [ J ]. IEEE Trans. on Signal Processing. 2008,56 (6) : 2370-2382. 被引量:1
  • 8W. Dai and O. Milenkovic. Subspace pursuit for compres- sive sensing signal reconstruction [ J ]. IEEE Trans. Inf. Theory. 2009,55 (5) :2230-2249. 被引量:1
  • 9S. MaJlat and Z. Zhang. Matching pursuits with time-fre- quency dictionaries J]. IEEE Trans. on Signal Process, 1993,41 (12) :3397-3415. 被引量:1
  • 10J. Tropp and A. Gilbert. Signal recovery from random measurements via orthogonal matching pursuit [ J ]. IEEE Trans. Inf. Theory,2008,53 (12) :4655-4666. 被引量:1

共引文献13

同被引文献152

引证文献15

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部