期刊文献+

一种求解多维函数优化问题的改进组搜索优化算法 被引量:2

An Improved Group Search Optimizer for Multi-dimensional Function Optimization Problems
下载PDF
导出
摘要 为提高组搜索优化算法求解多维函数优化问题的性能,提出一种结合逐维搜索、Metropolis准则、反方向视角和禁忌表策略的改进组搜索优化算法.逐维搜索策略逐维更新并评价成员位置,在每一维,更新的值与其他维组成候选位置,使用模拟退火的Metropolis准则来决定是否接受候选位置.反方向视角策略使成员按一定的概率做反方向搜索,禁忌表策略避免生产者始终保持不变.这些策略能更好地平衡算法的集中性和多样性.在典型测试函数上进行了仿真,结果表明改进策略是有效的,提高了组搜索算法求解多维函数优化问题的全局寻优能力和收敛速度. To improve the performance of group search optimizer for multi-dimensional function optimization problem,this paper presents an improved version which is based on dimension by dimension search,Metropolis rule,reverse direction angle,and tabu list strategies.The dimension by dimension search strategy updates and evaluates member's position dimension by dimension.On each dimension,a candidate position is constructed by the updated value and the values of other dimensions,and then the Metropolis rule of Simulated Annealing algorithm is used to decide whether to accept the candidate solution.The reverse direction angle strategy allows members to search new positions in reverse direction angle with some probability.The tabu list strategy is used to prevent the producer from being the same always.Using those strategies,the proposed algorithm can get better balance between intensification and diversification.The simulation experiments,which were carried on benchmark functions,show that those strategies are effective,and they improve the global optimization ability and convergence speed of group search optimizer for multi-dimensional function optimization problem.
出处 《小型微型计算机系统》 CSCD 北大核心 2013年第3期611-616,共6页 Journal of Chinese Computer Systems
基金 福建省自然科学基金项目(2009J05043 2011J05044 2008J0316)资助
关键词 组搜索优化 逐维搜索 METROPOLIS准则 反方向视角 禁忌表 group search optimizer dimension by dimension search Metropolis rule reverse direction angle tabu list
  • 相关文献

参考文献3

二级参考文献21

  • 1LU Hui-juan,ZHANG Huo-ming,MA Long-hua.A new optimization algorithm based on chaos[J].Journal of Zhejiang University-Science A(Applied Physics & Engineering),2006,7(4):539-542. 被引量:19
  • 2Whitley D,Rana S,Dzubera J,et al.Evaluating evolutionary algorithms[J].Artificial Intelligence, 1996,85:245-276. 被引量:1
  • 3Holland J H.Adaptation in natural and artificial systems[M].Ann Arbor:The University of Michigan Press,1975:228-234. 被引量:1
  • 4Rechenberg I.Evolutionstrategie: Optimieung technischer systeme nach Prinzipien der biologischen evolution[D].Frommann-Holzboog, Stuttgart, 1973. 被引量:1
  • 5Fogel L J,Owens A J,Walsh M J.Artificial intelligence through simulated evolution[M].New York:John Wiley,1966. 被引量:1
  • 6Colomi A,Dorigo M,Maniezzo V.Distributed optimization by ant colonies[C]//Proceedings of the First European Conference on Artificial Life,Paris,France, 1991 : 134-142. 被引量:1
  • 7Kenndy J,Eberhart R C.Particle Swarm Optimization[C]//Proceedings of the 1995 IEEE International Conference on Neural Networks, Piscataway, NJ, USA, 1995 : 1942-1948. 被引量:1
  • 8He S,Wu Q H.A novel group search optimizer inspired by animal behavioural[C]//2006 IEEE Congress on Evolutionary Computation, 2006:4415-4421. 被引量:1
  • 9Wolpert D H,Macready W G.No free lunch theorems for search[J]. IEEE Trans on Evolutionary Computation, 1997,1 ( 1 ) : 67-82. 被引量:1
  • 10Birge B.PSOT-a particle swarm optimization for use with matlab[C]// SIS' 03,Proceedings of the 2003 IEEE, Swarm Intelligence Symposium,Aprll 2003:182-186. 被引量:1

共引文献32

同被引文献16

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部