期刊文献+

曲面上旅行商问题的多项式时间近似方案 被引量:2

A Polynomial Time Approximation Scheme for the Traveling Salesman Problem in Curved Surfaces
下载PDF
导出
摘要 欧氏旅行商问题(TSP)的多项式时间近似方案(PTAS)结合了递归剖分、动态规划两种方法.相似的技术已成功用于构造多个欧氏组合优化问题的PTAS.为进一步拓展该方法的适用范围,研究曲面上的TSP.观察到球面不像平面那样可以递归正则剖分,对于可被开半球完全覆盖的小尺度球面TSP,采用的策略为将其逆球心射影到一个球内接正方形上,扰动其顶点并构造剖分网格,接着将该网格射影到球面,然后如同平面TSP的PTAS一样进行动态规划等操作.该策略被拓展到非小尺度球面TSP及更一般的一类曲面TSP.需注意的是由于球面、平面之间射影变形的不规则性,无法将球面TSP直接PTAS归约为平面TSP. The polynomial time approximation scheme (PTAS) for Euclidean traveling salesman problem (TSP) combines the two methods of recursive partition and dynamic programming. Similar techniques have been used to construct PTASes for some other Euclidean combinatorial optimization problems. To extend the applications of this method further, TSP in curved surfaces is studied. Observing that the sphere surface has no recursive regular partition as the plane, for a spherical TSP instance that can be covered by an open hemisphere, which we call a small scale instance, we project it onto a sphere-inscribed square to get a plane TSP instance. We perturb the new instance and construct its partition grid. Then we project the perturbed instance and the grid back onto the sphere surface. Things left, such as dynamic programming and randomization, are the same as the PTAS for the plane TSP. This result is generalized to non-small scale spherical TSP and TSP in a set of other curved surfaces. Because of the irregularity of the projections between the sphere surface and the plane, this method is not a PTAS reduction from the spherical TSP to the plane TSP.
作者 王刚 骆志刚
出处 《计算机研究与发展》 EI CSCD 北大核心 2013年第3期657-665,共9页 Journal of Computer Research and Development
关键词 旅行商问题 近似算法 多项式时间近似方案 凸壳 旋转卡壳 射影 traveling salesman problem (TSP) approximation algorithm polynomial timeapproximation scheme (PTAS) convex hull rotating calipers projection
  • 相关文献

参考文献24

  • 1Held M, Karp R. A dynamic programming approach to sequencing problems [J]. Journal of the Society for Industrial and Applied Mathematics, 1962, 10(1): 196-210. 被引量:1
  • 2Garey M, Graham R, Johnson D. Some NP-complete geometric problems [C] //Proc of the 8th ACM Symp on Theory of Computing. New York: ACM, 1976: 10-22. 被引量:1
  • 3Papadimitriou C H. The Euclidean TSP is NP-complete [J]. Theoretical Computer Science, 1977, 4(3) : 237-244. 被引量:1
  • 4Kabadi S N. Polynomially Solvable Cases of the TSP [M]// Gutin G, Punnen A P. The Traveling Salesman Problem and Its Variations. New York: Kluwer Academic, 2004: 489- 584. 被引量:1
  • 5Karp R M. Probabilistic analysis of partitioning algorithms for the traveling-salesman problem in the plane [J]. Mathematics of Operations Research, 1977, 2(3): 209-224. 被引量:1
  • 6Bockenhauer H J, Hromkovic J, Kneis J, et al. The parameterized approximability of TSP with deadlines [J]. Theory of Computing Systems, 2007, 41(3) :431-444. 被引量:1
  • 7Monnot J. Differential approximation results for the traveling salesman and related problems[J]. Information Processing Letters, 2002, 82(5): 229-2:35. 被引量:1
  • 8Monnot J, Vangelis Th P, Sophie T. Differential approximation results for the traveling salesman problem with distances 1 and 2 [J]. European Journal of Operational Research, 2003, 145(3): 557-568. 被引量:1
  • 9Punnen A, Margot F, Kabadi S. TSP heuristics= Domination analysis and complexity[J]. Algorithmica, 2003, 35 (2): 111-127. 被引量:1
  • 10Gutin G, Yeo A, Zverovitch A. Exponential Neighborhoods and Domination Analysis for the TSP [M]//Gutin G, Punnen A P. The Traveling Salesman Problem and Its Variations. New York: Kluwer Academic, 2004:223-256. 被引量:1

二级参考文献25

  • 1周智 万颖瑜 等.基于局部最优解的归约算法:一般方法和在TSP问题上的应用:技术报告[M].合肥:国家高性能计算中心,1999.. 被引量:1
  • 2Dorigo M, Maniezzo V, Colorni A. The ant system: Optimization by a colony of cooperating agents[J]. IEEE Trans on Systems, Man, and Cybernetics, Part B, 1996, 26 (1): 29-41. 被引量:1
  • 3Gambardella L M, Dorigo M. Solving symmetric and asymmetric TSPs by ant colonies [C] // Proc of the lnt Conf on Evolutionary Computation. Piscataway, NJ: IEEE, 1996:622-627. 被引量:1
  • 4Blum C, Dorigo M. Search bias in ant colony optimization: On the role of competition-balanced systems [J]. IEEE Trans on Evolutionary Computation, 2005, 9(2) : 159-174. 被引量:1
  • 5Blum C, Dorigo M. The hyper-cube framework for ant colony optimization [J]. IEEE Trans on Systems, Man, and Cybernetics, 2004, 34(2) : 1161-1172. 被引量:1
  • 6Dorigo M, Birattari M, Stutzle T. Ant colony optimization Artificial ants as a computational intelligence technique [J]. IEEE Computational Intelligence Magazine, 2006, 1 ( 11 ) :28-39. 被引量:1
  • 7Dorigo M, Gambardella L M. Ant colony system: A cooperative learning approach to the traveling salesman problem [J]. IEEE Trans on Evolutionary Computation, 1997, 1(1): 53-66. 被引量:1
  • 8Stutzle T, Hoos H H. MAX-MIN ant system [J]. Future Generation Computer System, 2000, 16(8): 889-914. 被引量:1
  • 9Reimann M. Guiding ACO by problem relaxation: A case study on the symmetric TSP [G] //LNCS4771. Berlin, Springer, 2007:45-56. 被引量:1
  • 10Le Louarn F X, Gendreau M, Potvin J Y. GENI ants for the travelling salesman problem [J]. Annals of Operations Research, 2004, 131(10): 187-201. 被引量:1

共引文献32

同被引文献31

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部