摘要
Novel precipitant prepared through carbonation with MgCl2 wastewater generated from rare earth extraction separation process and low-price dolomite as raw materials was studied in this paper. The purification methods of novel precipitant by adding appropriate oxidizing agent were studied. It was found that optimal purification result could be achieved with sodium hypochlorite as iron removal reagent and the iron removal rate could reach up to 90% when the adding amount was 0.1 vol.%. During the preparation, the particle size and distribution of ceria-based polishing powder were affected obviously by the parameters such as concentration, reaction temperature and feeding rate. The results showed that ceria-based polishing powder with D50 =2.5-3.5 μm and the particle size distribution of 0.65-0.75 μm could be prepared when the concentration of CeCl3 was 0.6 mol/L, the reaction temperature was maintained at 50 °C and the feeding speed was controlled at 25 ml/min. Compared with commercial powder, the self-made polishing powder had roughly the same cutting amount, but the surface finish of polished glass was better than that of commercial polishing powder.
Novel precipitant prepared through carbonation with MgCl2 wastewater generated from rare earth extraction separation process and low-price dolomite as raw materials was studied in this paper. The purification methods of novel precipitant by adding appropriate oxidizing agent were studied. It was found that optimal purification result could be achieved with sodium hypochlorite as iron removal reagent and the iron removal rate could reach up to 90% when the adding amount was 0.1 vol.%. During the preparation, the particle size and distribution of ceria-based polishing powder were affected obviously by the parameters such as concentration, reaction temperature and feeding rate. The results showed that ceria-based polishing powder with D50 =2.5-3.5 μm and the particle size distribution of 0.65-0.75 μm could be prepared when the concentration of CeCl3 was 0.6 mol/L, the reaction temperature was maintained at 50 °C and the feeding speed was controlled at 25 ml/min. Compared with commercial powder, the self-made polishing powder had roughly the same cutting amount, but the surface finish of polished glass was better than that of commercial polishing powder.
基金
Project supported by The National High Technology Research and Development Program of China(863Program:2010AA03A405)
Twelfth Five-Year National Science and Technology Pillar Program(2012BAE01B02)